Evaluating the Rutting Resistance of Asphalt Mixtures Containing Waste Steel and Treated Recycled Concrete Aggregate
Downloads
Doi: 10.28991/CEJ-2024-010-11-011
Full Text: PDF
Downloads
[2] Almuhmdi, A. D. M., Muhmood, A. A., & Salih, A. O. (2021). Effects of Crushed Glass Waste as a Fine Aggregate on Properties of Hot Asphalt Mixture. Tikrit Journal of Engineering Sciences, 28(3), 129–145. doi:10.25130/tjes.28.3.10.
[3] Burhan, H., & Ismael, M. Q. (2019). Effect of PolyPhosphoric Acid on Rutting Resistance of Asphalt Concrete Mixture. Civil Engineering Journal (Iran), 5(9), 1929–1940. doi:10.28991/cej-2019-03091383.
[4] Song, J., & Pellinen, T. (2007). Dilation Behavior of Hot Mix Asphalt under Triaxial Loading. Road Materials and Pavement Design, 8(1), 103–125. doi:10.3166/rmpd.8.103-125.
[5] Zhang, J., & Yang, J. (2017). Experimental and Numerical Investigation of Dilation Behavior of Asphalt Mixture. International Journal of Geomechanics, 17(2), 04016062. doi:10.1061/(asce)gm.1943-5622.0000738.
[6] Ismael, M. Q., Fattah, M. Y., & Jasim, A. F. (2021). Improving the rutting resistance of asphalt pavement modified with the carbon nanotubes additive. Ain Shams Engineering Journal, 12(4), 3619–3627. doi:10.1016/j.asej.2021.02.038.
[7] Sapkota, K., Yaghoubi, E., Wasantha, P. L. P., Van Staden, R., & Fragomeni, S. (2023). Mechanical Characteristics and Durability of HMA Made of Recycled Aggregates. Sustainability (Switzerland), 15(6), 5594. doi:10.3390/su15065594.
[8] Daquan, S., Yang, T., Guoqiang, S., Qi, P., Fan, Y., & Xingyi, Z. (2018). Performance evaluation of asphalt mixtures containing recycled concrete aggregates. International Journal of Pavement Engineering, 19(5), 422–428. doi:10.1080/10298436.2017.1402594.
[9] Taher, Z. K., & Ismael, M. Q. (2023). Moisture Susceptibility of Hot Mix Asphalt Mixtures Modified by Nano Silica and Subjected to Aging Process. Journal of Engineering, 29(4), 128–143. doi:10.31026/j.eng.2023.04.09.
[10] Saleem, A. A., & Ismael, M. Q. (2020). Assessment resistance potential to moisture damage and rutting for HMA mixtures reinforced by steel fibers. Civil Engineering Journal (Iran), 6(9), 1726–1738. doi:10.28991/cej-2020-03091578.
[11] Al-Shaybani, M. A. H. (2018). Wheel track test to predict permanent deformation (rutting depth) of hot-mix asphalt pavements and using silica fume to reduce effect of permanent deformation. Journal of Karbala University, 16(1), 104-113.
[12] Hussein, F. K., Ismael, M. Q., & Huseien, G. F. (2023). Rock Wool Fiber-Reinforced and Recycled Concrete Aggregate-Imbued Hot Asphalt Mixtures: Design and Moisture Susceptibility Evaluation. Journal of Composites Science, 7(10), 428. doi:10.3390/jcs7100428.
[13] Abd Alhay, B. A., & Jassim, A. K. (2020). Steel Slag Waste Applied to Modify Road Pavement. Journal of Physics: Conference Series, 1660(1), 012067. doi:10.1088/1742-6596/1660/1/012067.
[14] Al-Humeidawi, B. H. (2016). Experimental Characterization of Rutting Performance of HMA Designed with Aggregate Gradations According to Superpave and Marshall Methods. World Journal of Engineering and Technology, 04(03), 477–487. doi:10.4236/wjet.2016.43048.
[15] Hainin, M. R., Aziz, M. A., Ali, Z., Jaya, R. P., El-Sergany, M. M., & Yaacoba, H. (2015). Steel slag as a road construction material. Jurnal Teknologi, 73(4), 33–38. doi:10.11113/jt.v73.4282.
[16] Cross, S. A., Adu-Osei, A., Hainin, M. R., & Fredrichs, R. K. (1999). Effects of gradation on performance of asphalt mixtures. 78th Annual Meeting of the Transportation Research Board, 10-14 January, 1999, Washington, United States.
[17] Alabi, S. A., & Afolayan, J. O. (2013). Investigation on the potentials of cupola furnace slag in concrete. International Journal of Integrated Engineering, 5(2), 59–62.
[18] Arul, R., Vidhya, A., Karthikeyan, K., & Uthayakumar, P. (2016). Study on strength of concrete by using recycled aggregate from demolition waste in concrete. International Journal of Research in Engineering and Technology, 5(6), 176-181. doi:10.15623/ijret.2016.0506034.
[19] Nejad, F. M., Azarhoosh, A. R., & Hamedi, G. H. (2014). The Effects of Using Recycled Concrete on Fatigue Behavior of Hot Mix Asphalt. Journal of Civil Engineering and Management, 19(Supplement_1), S60–S68. doi:10.3846/13923730.2013.801892.
[20] Al-Bayati, N. K., & Ismael, M. Q. (2023). Effect of differently treated recycled concrete aggregates on Marshall properties and cost-benefit of asphalt mixtures. Sustainable Engineering and Innovation, 5(2), 127–140. doi:10.37868/sei.v5i2.id201.
[21] Lee, C. H., Du, J. C., & Shen, D. H. (2012). Evaluation of pre-coated recycled concrete aggregate for hot mix asphalt. Construction and Building Materials, 28(1), 66–71. doi:10.1016/j.conbuildmat.2011.08.025.
[22] Bhusal, S., Li, X., & Wen, H. (2011). Evaluation of Effects of Recycled Concrete Aggregate on Volumetrics of Hot-Mix Asphalt. Transportation Research Record: Journal of the Transportation Research Board, 2205(1), 36–39. doi:10.3141/2205-05.
[23] Sanya, O. T., & Shi, J. (2023). Ultra-high-performance fiber reinforced concrete review: constituents, properties, and applications. Innovative Infrastructure Solutions, 8(7), 188. doi:10.1007/s41062-023-01154-1.
[24] Cho, Y. H., Yun, T., Kim, I. T., & Choi, N. R. (2011). The application of Recycled Concrete Aggregate (RCA) for Hot Mix Asphalt (HMA) base layer aggregate. KSCE Journal of Civil Engineering, 15(3), 473–478. doi:10.1007/s12205-011-1155-3.
[25] Al-Bayati, H. K. A., Tighe, S. L., & Achebe, J. (2018). Influence of recycled concrete aggregate on volumetric properties of hot mix asphalt. Resources, Conservation and Recycling, 130, 200–214. doi:10.1016/j.resconrec.2017.11.027.
[26] Abass, B. J., & Albayati, A. H. (2020). Influence of recycled concrete aggregate treatment methods on performance of sustainable warm mix asphalt. Cogent Engineering, 7(1), 1718822. doi:10.1080/23311916.2020.1718822.
[27] Katz, A. (2004). Treatments for the Improvement of Recycled Aggregate. Journal of Materials in Civil Engineering, 16(6), 597–603. doi:10.1061/(asce)0899-1561(2004)16:6(597).
[28] Noguchi, T., & Tamura, M. (2001). Concrete design towards complete recycling. Structural Concrete, 2(3), 155–167. doi:10.1680/stco.2.3.155.40107.
[29] Tam, V. W. Y., Tam, C. M., & Le, K. N. (2007). Removal of cement mortar remains from recycled aggregate using pre-soaking approaches. Resources, Conservation and Recycling, 50(1), 82–101. doi:10.1016/j.resconrec.2006.05.012.
[30] Al-Saad, A. A., & Ismael, M. Q. (2022). Rutting Prediction of Hot Mix Asphalt Mixtures Reinforced by Ceramic Fibers. Journal of Applied Engineering Science, 20(4), 1345–1354. doi:10.5937/jaes0-38956.
[31] Çetin, S. (2014). Evaluation on the usability of structure steel fiber-reinforced bituminous hot mixtures. Construction and Building Materials, 64, 414–420. doi:10.1016/j.conbuildmat.2014.04.093.
[32] Alfalah, A., Offenbacker, D., Ali, A., Decarlo, C., Lein, W., Mehta, Y., & Elshaer, M. (2020). Assessment of the Impact of Fiber Types on the Performance of Fiber-Reinforced Hot Mix Asphalt. Transportation Research Record, 2674(4), 337–347. doi:10.1177/0361198120912425.
[33] Albayati, N., & Qader-Ismael, M. (2024). Rutting performance of asphalt mixtures containing treated RCA and reinforced with carbon fibers. Aibi, Revista de Investigacion Administracion e Ingenierias, 12(1), 18–28. doi:10.15649/2346030X.3436.
[34] Köfteci, S. (2018). Experimental Study on the Low-Cost Iron Wire Fiber Reinforced Asphalt Concrete. Teknik Dergi, 29(4), 8515–8535. doi:10.18400/tekderg.350135.
[35] SCRB. (2003). Standard Specifications for Roads and Bridges, Section R/9, Hot-Mix Asphaltic Concrete Pavement. The State Corporation for Roads and Bridges, Ministry of Housing and Construction, Baghdad, Iraq.
[36] Guo, J. F. (2014). The effect of steel fiber on the road performance of asphalt concrete. Applied Mechanics and Materials, 584–586, 1342–1345. doi:10.4028/www.scientific.net/AMM.584-586.1342.
[37] Ugla, S. K., & Ismael, M. Q. (2023). Evaluating the Moisture Susceptibility of Asphalt Mixtures Containing RCA and Modified by Waste Alumina. Civil Engineering Journal (Iran), 9, 250–262. doi:10.28991/CEJ-SP2023-09-019.
[38] Abdulkhaleq Mahdi, A., & Qadir Ismael, M. (2019). Rutting Resistance Potential of High Modulus Asphalt Concrete Pavements. Journal of Engineering and Applied Sciences, 14(12), 4183–4190. doi:10.36478/jeasci.2019.4183.4190.
[39] Xu, X., Luo, Y., Sreeram, A., Wu, Q., Chen, G., Cheng, S., Chen, Z., & Chen, X. (2022). Potential use of recycled concrete aggregate (RCA) for sustainable asphalt pavements of the future: A state-of-the-art review. Journal of Cleaner Production, 344(2), 130893. doi:10.1016/j.jclepro.2022.130893.
[40] Al-Bayati, N. K., & Ismael, M. Q. (2024). Rutting Prediction of Asphalt Mixtures Containing Treated and Untreated Recycled Concrete Aggregate. Journal of Engineering, 30(02), 105–117. doi:10.31026/j.eng.2024.02.07.
[41] Zhang, H., Yang, X., Li, Y., Fu, Q., & Rui, H. (2022). Laboratory Evaluation of Dynamic Characteristics of a New High-Modulus Asphalt Mixture. Sustainability, 14(19), 11838. doi:10.3390/su141911838.
[42] Kyokai, N.D. (2007). Pavement Investigation and Testing Methods Handbook. Hosou Chousa Shikenhou Binran, 3, Japan Road Association, Tokyo, Japan.
[43] Ismael, M., Fattah, M. Y., & Jasim, A. F. (2022). Permanent Deformation Characterization of Stone Matrix Asphalt Reinforced by Different Types of Fibers. Journal of Engineering, 28(2), 99–116. doi:10.31026/j.eng.2022.02.07.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.