Experimental Study of the Principal Characteristics of Sustainable Micropile Grout Containing Alternative Sands
Abstract
Doi: 10.28991/CEJ-2024-010-10-019
Full Text: PDF
Keywords
References
Eslami, A., Moshfeghi, S., MolaAbasi, H., & Eslami, M. M. (2020). Background to foundation engineering. Piezocone and Cone Penetration Test (CPTu and CPT) Applications in Foundation Engineering, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-08-102766-0.00002-x.
Thomas F. H. (2007). 4th Lizzi Lecture: Historical Review and Analysis of 55 Years of Micropiles. Proceeding 8th IWM, 26-30 September, 2007, Toronto, Canada.
Bruce, D. A., DiMillio, A. F., & Juran, I. (1997). Micropiles: the state of practice Part 1: Characteristics, definitions and classifications. Proceedings of the Institution of Civil Engineers - Ground Improvement, 1(1), 25–35. doi:10.1680/gi.1997.010104.
Elsaied, A. E. (2014). Performance of footing with single side micro-piles adjacent to slopes. Alexandria Engineering Journal, 53(4), 903–910. doi:10.1016/j.aej.2014.07.004.
No. FHWA NHI-05-039. (2005). Micropile design and construction—Reference manual, FHWA NHI-05-039. Department of Transportation. Federal Highway Administration, U. S. Department of Transportation, Washington, United States.
Bui, D. Van, Nguyen, M. Van, Nguyen, T. D., & Vu, T. N. (2022). A numerically investigate of the improvement of load carrying capacity of square footings utilizing micropiles. Journal of Mining and Earth Sciences, 63(5), 106–117. doi:10.46326/jmes.2022.63(5).10.
Aboutabikh, M., Soliman, A. M., & El Naggar, M. H. (2020). Performance of hollow bar micropiles using green grout incorporating treated oil sand waste. Journal of Building Engineering, 27, 100964. doi:10.1016/j.jobe.2019.100964.
Shong, I. L. S., & Chung, F. C. (2003). Design & construction of micropiles. Geotechnical Course for Pile Foundation Design and Construction, 29-30 September 2003, Ipoh, Malaysia.
Intergovernmental Panel on Climate Change (IPCC). (2014). Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, New York, United States.
Qian, C. (2022). Application of low-carbon design concept of network energy consumption based on SDN architecture in high-rise residential building design. Alexandria Engineering Journal, 61(4), 3303–3312. doi:10.1016/j.aej.2021.08.063.
Shen, W., Cao, L., Li, Q., Zhang, W., Wang, G., & Li, C. (2015). Quantifying CO2 emissions from China’s cement industry. Renewable and Sustainable Energy Reviews, 50, 1004–1012. doi:10.1016/j.rser.2015.05.031.
Madlool, N. A., Saidur, R., Hossain, M. S., & Rahim, N. A. (2011). A critical review on energy use and savings in the cement industries. Renewable and Sustainable Energy Reviews, 15(4), 2042–2060. doi:10.1016/j.rser.2011.01.005.
Dano, C., Hicher, P.-Y., & Tailliez, S. (2004). Engineering Properties of Grouted Sands. Journal of Geotechnical and Geoenvironmental Engineering, 130(3), 328–338. doi:10.1061/(asce)1090-0241(2004)130:3(328).
Nouranbakhsh, M., Barkhordari, K., & Ghasemi, S. (2024). Improvement of Sand Soil with Bio-micropiles and Bio-grout Injection in Reinforced Soils. International Journal of Engineering, 37(6), 1076–1084. doi:10.5829/ije.2024.37.06c.04.
Rentier, E. S., & Cammeraat, L. H. (2022). The environmental impacts of river sand mining. Science of the Total Environment, 838(1), 155877. doi:10.1016/j.scitotenv.2022.155877.
Walenna, M. A. (2023). Investigating the Consolidation Behaviour of Cement-Bentonite Barrier Materials Containing PFA and GGBS. Civil Engineering Journal, 9(3), 512-530. doi:10.28991/CEJ-2023-09-03-02.
Avci, E. (2019). Silica Fume Effect on Engineering Properties of Superfine Cement–Grouted Sands. Journal of Materials in Civil Engineering, 31(11), 4019269. doi:10.1061/(asce)mt.1943-5533.0002928.
Bakar, A. A., & Hashim, M. S. (2023). The grout performance with coal bottom ash as partial sand replacement. International Conference on Materials Engineering and Manufacturing Systems: Icmems2022, 2747, 040014. doi:10.1063/5.0113779.
Çelik, F., Çınar, M., & Akcuru, O. (2022). Utilization of waste bottom ash as mineral additive with partial replacement of cement in geotechnical grouting works based on mechanical features. Arabian Journal of Geosciences, 15(14). doi:10.1007/s12517-022-10560-1.
Lin, C., Wang, M., Liu, X., Li, Z., Zhang, J., & Gao, Y. (2023). Working performance of red mud-based grouting materials mixed with ultrafine limestone and quartz. Construction and Building Materials, 383, 131326. doi:10.1016/j.conbuildmat.2023.131326.
Obebe, M. D., Ikumapayi, C. M., & Alaneme, K. K. (2023). Structural performance evaluation of concrete mixes containing recycled concrete aggregate and calcined termite mound for low-cost housing. Alexandria Engineering Journal, 72, 237–246. doi:10.1016/j.aej.2023.03.095.
Tang, P., Javadi, A. A., & Vinai, R. (2024). Sustainable utilisation of calcium-rich industrial wastes in soil stabilisation: Potential use of calcium carbide residue. Journal of Environmental Management, 357, 120800. doi:10.1016/j.jenvman.2024.120800.
Pastor, J. L., Ortega, J. M., Flor, M., López, M. P., Sánchez, I., & Climent, M. A. (2016). Microstructure and durability of fly ash cement grouts for micropiles. Construction and Building Materials, 117, 47–57. doi:10.1016/j.conbuildmat.2016.04.154.
Danielsen, S. W., Wigum, B. J., Petersen, B., & Hotvedt, O. (2009). Production and Utilisation of Manufactured Sand. State-of-the-art-report. COIN Project report 12, SINTEF Building and Infrastructure, Oslo, Norway.
Mundra, S., Sindhi, P. R., Chandwani, V., Nagar, R., & Agrawal, V. (2016). Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix. Perspectives in Science, 8, 345–347. doi:10.1016/j.pisc.2016.04.070.
Arulmoly, B., & Konthesingha, C. (2022). Pertinence of alternative fine aggregates for concrete and mortar: a brief review on river sand substitutions. Australian Journal of Civil Engineering, 20(2), 272–307. doi:10.1080/14488353.2021.1971596.
Joel, M. (2010). Use of crushed granite fine as replacement to river sand in concrete production. Leonardo Electronic Journal of Practices and Technologies, 9(17), 85–96.
Li, H., Huang, F., Cheng, G., Xie, Y., Tan, Y., Li, L., & Yi, Z. (2016). Effect of granite dust on mechanical and some durability properties of manufactured sand concrete. Construction and Building Materials, 109, 41–46. doi:10.1016/j.conbuildmat.2016.01.034.
Bacarji, E., Toledo Filho, R. D., Koenders, E. A. B., Figueiredo, E. P., & Lopes, J. L. M. P. (2013). Sustainability perspective of marble and granite residues as concrete fillers. Construction and Building Materials, 45, 1–10. doi:10.1016/j.conbuildmat.2013.03.032.
Zhao, S., Ding, X., Zhao, M., Li, C., & Pei, S. (2017). Experimental study on tensile strength development of concrete with manufactured sand. Construction and Building Materials, 138, 247–253. doi:10.1016/j.conbuildmat.2017.01.093.
TCVN 9205. (2012). Crushed sand for concrete and mortar. National Standard, Hanoi City, Vietnam. (In Vietnamese).
Ollivier, J. P., Maso, J. C., & Bourdette, B. (1995). Interfacial transition zone in concrete. Advanced Cement Based Materials, 2(1), 30–38. doi:10.1016/1065-7355(95)90037-3.
Bruce, D. A., & Juran, I. (1997). Drilled and Grouted Micropiles: State-of-Practice Review, Volume IV: Case Histories. Department of Transportation, Federal Highway Administration, Washington, United States.
ASTM C230/C230M-20. (2021). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0230_C0230M-20.
ASTM C939-10. (2016). Standard Test Method for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method). ASTM International, Pennsylvania, United States. doi:10.1520/C0939-10.
UN-EN 14199. (2015). Execution of special geotechnical works – Micropiles. Asociación Española de Normalización, UNE, Madrid, Spain. (In Spanish).
Chattopadhya, B. C., & Saha, S. (1982). Effect of grain size of cohesionless soil on its shear strength characteristics. Geomech 81: Symposium on Engineering Behaviour of Coarse Grained Soils, Boulders & Rocks, 21-23 December 1981, Hyderabad, India.
Li, S., Sha, F., Liu, R., Zhang, Q., & Li, Z. (2017). Investigation on fundamental properties of microfine cement and cement-slag grouts. Construction and Building Materials, 153, 965–974. doi:10.1016/j.conbuildmat.2017.05.188.
Lim, S. K., Tan, C. S., Chen, K. P., Lee, M. L., & Lee, W. P. (2013). Effect of different sand grading on strength properties of cement grout. Construction and Building Materials, 38, 348–355. doi:10.1016/j.conbuildmat.2012.08.030.
Pantazopoulos, I. A., Markou, I. N., Christodoulou, D. N., Droudakis, A. I., Atmatzidis, D. K., Antiohos, S. K., & Chaniotakis, E. (2012). Development of microfine cement grouts by pulverizing ordinary cements. Cement and Concrete Composites, 34(5), 593–603. doi:10.1016/j.cemconcomp.2012.01.009.
Farran, J. (1957). Mineralogical contribution to the study of adhesion between the hydrated constituents of cements and coated materials, Ph.D. Thesis, Toulouse, France. (In French)
Zimbelmann, R. (1985). A contribution to the problem of cement-aggregate bond. Cement and Concrete Research, 15(5), 801–808. doi:10.1016/0008-8846(85)90146-2.
Jambor, J. (1986). Pore structure and strengths of hardened cement pastes. Proceedings of 8th ICCC, 22-27 September, 1986, Rio de Janeiro, Brazil.
Akçaoǧlu, T., Tokyay, M., & Çelik, T. (2004). Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression. Cement and Concrete Composites, 26(6), 633–638. doi:10.1016/S0958-9465(03)00092-1.
Lyu, K., She, W., Chang, H., & Gu, Y. (2020). Effect of fine aggregate size on the overlapping of interfacial transition zone (ITZ) in mortars. Construction and Building Materials, 248, 118559. doi:10.1016/j.conbuildmat.2020.118559.
Elsharief, A., Cohen, M. D., & Olek, J. (2003). Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone. Cement and Concrete Research, 33(11), 1837–1849. doi:10.1016/S0008-8846(03)00205-9.
Scrivener, K. L., Crumbie, A. K., & Laugesen, P. (2004). The interfacial transition zone (ITZ) between cement pastes and aggregate in concrete. Interface Science, 12(4), 411–421. doi:10.1023/B:INTS.0000042339.92990.4c.
Kang, S. H., Ahn, T. H., & Kim, D. J. (2012). Effect of grain size on the mechanical properties and crack formation of HPFRCC containing deformed steel fibers. Cement and Concrete Research, 42(5), 710–720. doi:10.1016/j.cemconres.2012.02.011.
Grandet, J., & Ollivier, J. P. (1980). Study of the formation of hydrated calcium MonoCarb aluminate in contact with a limestone aggregate in a Portland cement paste. Cement and Concrete Research, 10(6), 759–770. doi:10.1016/0008-8846(80)90004-6.
Garboczi, E. J. (1990). Permeability, diffusivity, and microstructural parameters: A critical review. Cement and Concrete Research, 20(4), 591–601. doi:10.1016/0008-8846(90)90101-3.
Monteiro, P. (2006). Concrete: microstructure, properties, and materials. McGraw-Hill Publishing, New York, United States.
Wong, H. S., & Buenfeld, N. R. (2006). Patch microstructure in cement-based materials: Fact or artefact? Cement and Concrete Research, 36(5), 990–997. doi:10.1016/j.cemconres.2006.02.008.
Yuan, C. Z., & Odler, I. (1987). The interfacial zone between marble and tricalcium silicate paste. Cement and Concrete Research, 17(5), 784–792. doi:10.1016/0008-8846(87)90041-X.
DOI: 10.28991/CEJ-2024-010-10-019
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 DUC BUI-VAN, Phuc Lam Dao, Manh Van Nguyen, Nhan Thi Pham, Viet Huy Le, Lam Van Tang, Phi Van Dang, Hung Xuan Ngo, Piotr Osinski, Kennedy Onyelowe
This work is licensed under a Creative Commons Attribution 4.0 International License.