The ITB Unit Hydrograph Method: A Novel Approach to User-Defined Unit Hydrograph Development (Part I)

Dantje K. Natakusumah, Waluyo Hatmoko, Dhemi Harlan, Eka O. Nugroho, Arno A. Kuntoro, Mohammad Farid, Fitra Adinata, Jovian Javas

Abstract


All synthetic unit hydrographs can be considered user-defined to some degree, reflecting the inherent influence of user input in their development. This paper constitutes the first part of a two-part series titled The ITB Unit Hydrograph Method: A Novel Approach to User-Defined Unit Hydrograph Development. It focuses on foundational concepts, the verification of existing SUH methods, and the creation of simple user-defined Synthetic and Natural Unit Hydrographs. The verification process involves reproducing established hydrographs, including the SCS-Triangular, SCS-Curvilinear, and SCS-Delmarva models, by computing their Peak Rate Factor (Kp) and Peak Discharge (Qp) values using ITB-UH formulas. Results demonstrate high accuracy, with discrepancies in Kp values consistently below 1%, confirming the reliability of the ITB-UH Method in replicating existing models. Furthermore, the study highlights the ITB-UH Method’s capability to develop user-defined synthetic hydrographs, as exemplified by the Double Triangle Synthetic Unit Hydrograph and the HKR Natural Unit Hydrograph. The Double Triangle model introduces a simple unit hydrograph with distinct geometric properties, while the HKR model effectively represents a natural unit hydrograph derived from rainfall-runoff dynamics in a watershed. Both models were applied to flood discharge simulations in the Pinamula Watershed using consistent steps for effective rainfall excess distribution and convolution. The results demonstrate that all hydrographs, despite differences in shape and peak characteristics, yield consistent total flood volumes. These findings underscore the ITB-UH Method’s potential to generate unit hydrographs based on user-defined models—whether defined by equations or tables. It should be noted that the simple user-defined unit hydrographs presented in this paper do not include calibration capabilities, a topic that will be explored in Part II of the series.

 

Doi: 10.28991/CEJ-2025-011-04-021

Full Text: PDF


Keywords


ITB-UH Method; SCS SUH (Triangle, Curvilinear, Delmarva); ITB Double Triangle Synthetic UH; HKR Natural UH.

References


Natakusumah, D. K. (2009). General Procedure for Determining Synthetic Unit Hydrograph for Calculating Design Flood Hydrograph. National Seminar on Water Resources Engineering, The Role of Community, Government and Private Sector as Networks, in Flood Hazard Mitigation, 11 August, Bandung, Indonesia. (In Indonesian).

Natakusumah, D. K., Hatmoko, W., & Harlan, D. (2011). General Procedure for Calculating Synthetic Unit Hydrographs Using the ITB Method and Some Examples of Its Application. Jurnal Teknik Sipil, 18(3), 251. doi:10.5614/jts.2011.18.3.6. (In Indonesian).

Natakusumah, D. K., Harlan, D., & Hatmoko, W. (2013). A new synthetic unit hydrograph computation method based on the mass conservation principle. WIT Transactions on Ecology and the Environment, 172, 27–38. doi:10.2495/RBM130031.

Natakusumah, D. K. (2016). The Use of Synthetic Unit Hydrographs ITB 1 and ITB-2 With Peak Discharge Factor (Kp) Calculated Exactly. PIT HATHI 31, 15 March, 2014, Padang, Indonesia. (In Indonesian).

Natakusumah, D. K., Wicaksana, G. A., & Nathaniel, B. (2021). Towards standardization of design flood calculation using Synthetic Unit Hydrograph methods. 7th International Seminar of HATHI, 30 October, Surabaya, Indonesia. (In Indonesian).

Natakusumah, D. K. (2024). ITB Synthetic Unit Hydrograph Method with Exact and Numerical Peak Discharge Factor (Kp) and Normalized Unit Rainfall Duration (Tr). Media Komunikasi Teknik Sipil, 30(1), 144–156. doi:10.14710/mkts.v30i1.55820.

Yi, B., Chen, L., & Xie, T. (2024). On the Influence of Spatial Heterogeneity of Runoff Generation on the Distributed Unit Hydrograph for Flood Prediction. doi:10.5194/hess-2024-51.

Rafiee, M. R., Rad, S., Mahbod, M., Zolghadr, M., Azamatulla, H. M., & Tripathi, R. P. (2024). Modeling run-off flow hydrographs using remote sensing data: an application to the Bashar basin, Iran. Journal of Water and Climate Change, 15(4), 1490–1506. doi:10.2166/wcc.2024.378.

Das, T., & Das, S. (2024). Event-based flood estimation in un-gauged sub-basins: a comparative assessment of SCS-UH, CWC-UH and Nash-GIUH based rainfall-runoff models in Shilabati River, Eastern India. Natural Hazards. doi:10.1007/s11069-024-06765-0.

Qi, K., Al-Asadi, K., & Duan, J. G. (2024). Modeling Runoff and Sediment Load Using the HEC-HMS Model in an Arid Watershed. Journal of Hydrologic Engineering, 29(3), 05024005. doi:10.1061/jhyeff.heeng-6070.

Marasini, U., & Pokhrel, M. (2024). Comparative analysis of rainfall-runoff simulation using a long short-term memory (LSTM) deep learning model and a conceptual hydrological model, HEC-HMS: a case study of the mountainous river basin of Nepal. Discover Civil Engineering, 1(1), 78. doi:10.1007/s44290-024-00084-w.

Lange, H., & Sippel, S. (2020). Machine Learning Applications in Hydrology. Forest-Water Interactions, 233–257. doi:10.1007/978-3-030-26086-6_10.

Shao, Z., Fu, H., Li, D., Altan, O., & Cheng, T. (2019). Remote sensing monitoring of multi-scale watersheds impermeability for urban hydrological evaluation. Remote Sensing of Environment, 232, 111338. doi:10.1016/j.rse.2019.111338.

Nakhaei, M., Nakhaei, P., Gheibi, M., Chahkandi, B., Wacławek, S., Behzadian, K., Chen, A. S., & Campos, L. C. (2023). Enhancing community resilience in arid regions: A smart framework for flash flood risk assessment. Ecological Indicators, 153, 110457. doi:10.1016/j.ecolind.2023.110457.

Chen, H., Jeanne Huang, J., Li, H., Wei, Y., & Zhu, X. (2023). Revealing the response of urban heat island effect to water body evaporation from main urban and suburb areas. Journal of Hydrology, 623, 129687. doi:10.1016/j.jhydrol.2023.129687.

Hall, C. A., Saia, S. M., Popp, A. L., Dogulu, N., Schymanski, S. J., Drost, N., van Emmerik, T., & Hut, R. (2022). A hydrologist’s guide to open science. Hydrology and Earth System Sciences, 26(3), 647–664. doi:10.5194/hess-26-647-2022.

SNI 2415:2016. (2016). Procedures for calculating planned flood discharge (SNI 2415:2016). Procedures for calculating design flood discharge. Badan Standardisasi Nasional, Jakarta, Indonesia. (In Indonesian).

United Kingdom (UK) Government. (2010). Flood and Water Management Act 2010. United Kingdom (UK) Government, London, United Kingdom. Available Online: https://www.legislation.gov.uk/ukpga/2010/29/contents (accessed on March 2025).

Ball, J., Babister, M., Nathan, R., Weinmann, E., Weeks, W., & Retallick, M. (2019). Australian rainfall and runoff: A guide to flood estimation. Commonwealth of Australia, Sydney, Australia.

Public Safety Canada. (2021). National flood risk assessment guidelines. Ottawa, Ontario: Public Safety Canada. Public Safety Canada, Ottawa, Canada. Available online: https://www.publicsafety.gc.ca (accessed on March 2024).

ICOLD. (2020). Guidelines for flood management and dam safety. International Commission on Large Dams (ICOLD), Paris, France.

MSMA. (2021). Urban stormwater management manual for Malaysia (MSMA). Department of Irrigation and Drainage Malaysia, Cyberjaya, Malaysia. Available online: https://www.water.gov.my/jps/resources/PDF/MSMA2ndEdition_august_2012.pdf (accessed on March 2025).

ANCOLD. (2016). Report CL1895: Guidelines on dam safety management. Australian National Committee on Large Dams (ANCOLD), Hobart, Australia. Available online: https://www.ancold.org.au/wp-content/uploads/2016/06/CL1895-Report.pdf (accessed on March 2025).

Sherman, L. K. (1932). Streamflow from rainfall by the unit-graph method. Eng. News Record, 108, 501-505.

Snyder, F. F. (1938). Flood-frequency and drainage-basin characteristics. Transactions of the American Society of Civil Engineers, 103(1), 877–924.

Singh, P. K., Mishra, S. K., & Jain, M. K. (2014). A review of the synthetic unit hydrograph: from the empirical UH to advanced geomorphological methods. Hydrological Sciences Journal, 59(2), 239–261. doi:10.1080/02626667.2013.870664.

Patil, S. K., & Bhagwat, T. N. (2019). A review of synthetic hydrograph method for design storm. International Research Journal of Engineering and Technology, 6(11), 2413-2418.

Taylor, A. B., & Schwarz, H. E. (1952). Unit‐hydrograph lag and peak flow related to basin characteristics. Eos, Transactions American Geophysical Union, 33(2), 235–246. doi:10.1029/TR033i002p00235.

Mockus, V. (1957). Use of storm and watershed characteristics in synthetic hydrograph analysis and application. Soil Conservation Service, US Department of Agriculture, Washington, United States.

U.S. Department of Agriculture. (2007). Part 630 Hydrology. Chapter 16: Hydrographs. National Engineering Handbook, US Department of Agriculture, Washington, United States. Available online: https://damtoolbox.org/images/5/5a/NEH16.pdf (accessed on March 2024).

Nakayasu, N. (1962). Runoff characteristics in Japan. Transactions of the Japan Society of Civil Engineers, 77, 1–5.

Tunas, I. G. (2017). Development of synthetic unit hydrograph model based on fractal characteristics of river basin. PhD Thesis, Surabaya, Indonesia. (In Indonesian).

Patel, R. M. (2024). SCS dimensionless unit hydrograph. Available online: http://www.professorpatel.com/scs-dimensionless-unit-hydrograph.html (accessed on March 2025).

Singh, V. P. (1988). The Double Triangle Model. Hydrologic systems: Vol. 1. Rainfall-runoff modeling. Prentice Hall, New Jersey, United States.

Hickok, R. B., Keppel, R. V., & Rafferty, B. R. (1959). Hydrograph synthesis for small arid land watersheds. Agricultural Engineering, 40(10), 608-611.

Singh, V. P. (1988). The Hickok-Keppel-Rafferty (HKR) Model. Hydrologic systems: Vol. 1. Rainfall-runoff modeling. Prentice Hall, New Jersey, United States.

Mashuri, M., & Kiranaratri, A. H. (2019). Study of Modelling Synthetic Unit Hydrograph Using ITB-1 Method (Case Study: Upstream Siak Watershed). Jurnal Kajian Teknik Sipil, 4(2), 99–108. doi:10.52447/jkts.v4i2.1685.

Iyan, E. R., Labdul, B. Y., & Husnan, R. (2022). Optimization of Synthetic Unit Hydrograph Parameter Coefficients Itb-1 and Itb-2 in the Bionga Kayubulan Sub-Das. Composite Journal, 2(1), 21-27. (In Indonesian).

Saidah, H., Setiawan, A., Hanifah, L., Suroso, A., & Supriyadi, A. (2022). Performance of Nakayasu Synthetic Unit Hydrograph, ITB 2 and Limantara for Elongated Watersheds. PADURAKSA: Jurnal Teknik Sipil Universitas Warmadewa, 11(2), 157–165. doi:10.22225/pd.11.2.5013.157-165.

Krisnayanti, D. S., Hunggurami, E., & Heo, R. S. (2020). Comparison of Design Flood Discharge Using Nakayasu, Gama I and Limantara HSS Methods in Raknamo Watershed. Jurnal Teknik Sipil, 9(1), 1-14. (In Indonesian).

Peter, A. D. (2018). Comparison of Several Synthetic Unit Hydrographs (GAMA 1, Nakayasu, ITB 1-2, SCS, and Limantara) with Measured Unit Hydrographs. Bachelor Thesis, Universitas Gadjah Mada, Yogyakarta, Indonesia. (In Indonesian).

Dewa B, A. G. (2016). Synthetic Unit Hydrograph Analysis with HSS Gama I and HSS ITB-2 Methods for Pam Sub-DAS (Final Project). Department of Civil Engineering, Faculty of Engineering, Sriwijaya University, Palembang, Indonesia. (In Indonesian).

Kirana, P. H., Farid, M., Bagus Adityawan, M., Kuntoro, A. A., & Widyaningtyas, W. (2023). Study of Flood Risk Assessment on Banyumas and Cilacap District in Downstream Serayu River Basin, Indonesia. Jurnal Teknik Sipil, 30(2), 149–156. doi:10.5614/jts.2023.30.2.2.

Suryadi, C., Soekarno, I., Kardhana, H., & Kuntoro, A. A. (2024). High Flow and Low Flow Frequency Analysis of Cikapundung River. Bearing: Jurnal Penelitian Dan Kajian Teknik Sipil, 8(2), 52. doi:10.32502/jbearing.v8i2.7840.

Christian, J.D., Harlan, D., Suryadi, Y., Nugroho, E.O. (2024). Effectiveness of Baffled Chute Spillway Utilization at Lau Simeme Dam, Deli Serdang, North Sumatra. Pertemuan Ilmiah Tahunan ke-41 HATHI, 27-29 September, Sorong, Indonesia. (In Indonesian).


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-04-021

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Dantje Kardana Natakusumah, Waluyo Hatmoko, Dhemi Harlan, Eka Oktariyanto Nugroho, Arno Adi Kuntoro, Mohammad Farid, Fitra Adinata, Jovian Javas

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message