Sensitivity and Optimization Analysis of Torsional Behavior in Multicellular Thin-Walled Tubes

Ammar A. Alshannaq, Mohammad F. Tamimi, Muʹath I. Abu Qamar

Abstract


Multicellular thin-walled tubes are widely used due to their lightweight, economical design, and superior shear and torsional performance. Their design is sometimes governed by the available materials and the required dimensions. The current study uses advanced sensitivity analysis with meta-modeling tools to understand how different geometric and mechanical factors affect the torsional performance of multicellular thin-walled tubes. The geometric factors include the length, thickness, and width of the beams, while the mechanical properties involve the shear modulus. Variance-based sensitivity analysis is used to assess how variations in these factors impact the rate of twist, torsional stiffness, and shear stress. The interconnected relations between input parameters are exploited for optimal design and superior performance. The results revealed that for a three-celled tube, thick horizontal interior elements with thin deep vertical elements and thin exterior elements provide an optimal design when the cross-sectional area is constrained. This finding, combined with varying the geometrical and material properties, results in an optimal design using CFRP composites when constrained by minimizing the total weight and superior torsional performance. The analysis can be extended to include other constraint(s), but changing the design constraints might change the optimal design.

 

Doi: 10.28991/CEJ-2024-010-09-09

Full Text: PDF


Keywords


Multi-Cellular Thin-Walled Structure; Sensitivity; Composites; Torsional Properties; Uncertainty; Optimization.

References


Gere, J. M., Goodno, B. J. (2017). Mechanics of Materials. Cengage Learning, Massachusetts, United States.

Oden, J., & Ripperger, E. (1981). Mechanics of elastic structures. Hemisphere Publishing Corp, Washington, United States.

Philippidis, T. P., Vassilopoulos, A. P., Katopis, K. G., & Voutsinas, S. G. (1996). THIN/PROBEAM: A software for fatigue design and analysis of composite rotor blades. Wind Engineering, 20(5), 349–362.

Jönsson, J. (1998). Determination of shear stresses, warping functions and section properties of thin-walled beams using finite elements. Computers and Structures, 68(4), 393–410. doi:10.1016/S0045-7949(98)00070-4.

Tariq, M. M., & Ahmed, M. N. (2010). Software development for shear stress distribution in multicell beams of isotropic materials. Key Engineering Materials, 442, 453–461. doi:10.4028/www.scientific.net/KEM.442.453.

Boresi, A. P., & Schmidt, R. J. (2002). Advanced mechanics of materials. John Wiley & Sons, Hoboken, United States.

Waldron, P. (1986). Sectorial properties of straight thin-walled beams. Computers and Structures, 24(1), 147–156. doi:10.1016/0045-7949(86)90344-5.

Chai Hong Yoo, & Acra, S. V. (1986). Cross-sectional properties of thin-walled multi-cellular section. Computers and Structures, 22(1), 53–61. doi:10.1016/0045-7949(86)90084-2.

Johnson, D. (1988). A Cellular Analogy for the Saint‐Venant Torsion Analysis of Solid and Hollow Sections. Computer-Aided Civil and Infrastructure Engineering, 3(2), 173–178. doi:10.1111/j.1467-8667.1988.tb00167.x.

Yoo, C. H., Kang, J., Kim, K., & Lee, K. C. (2011). Shear flow in thin-walled cellular sections. Thin-Walled Structures, 49(11), 1341–1347. doi:10.1016/j.tws.2011.02.014.

Li, L. Y., & Easterbrook, D. (2014). Free torsion of thin-walled structural members of open- and closed-sections. Applied Mathematics and Mechanics, 35(1), 25–32. doi:10.1007/s10483-014-1769-6.

Gebre, T. H., Galishnikova, V. V., Lebed, E. V., & Tupikova, E. M. (2023). Modelling of thin-walled members with restrained torsion considering the section properties. Magazine of Civil Engineering, 118(2), 11806. doi:10.34910/MCE.118.6.

He, H. N., Wang, S. Y., Xi, H. F., Xiao, H., Zhan, L., & Zhou, J. S. (2024). The large strain snap-through effect in free torsion of highly elastic soft, thin-walled tubes with exact closed-form solutions. Thin-Walled Structures, 199, 111803. doi:10.1016/j.tws.2024.111803.

Rees, D. W. A., & Alsheikh, A. M. S. (2024). Theory of Flexural Shear, Bending and Torsion for a Thin-Walled Beam of Open Section. World Journal of Mechanics, 14(03), 23–53. doi:10.4236/wjm.2024.143003.

Bank, L. C. (2006). Composites for Construction: Structural Design with FRP Materials. Wiley, Hoboken, United States. doi:10.1002/9780470121429.

Han, M. L., Wang, H. Y., Wang, S. Y., & Xiao, H. (2023). Exact large strain analysis for the Poynting effect of freely twisted thin-walled tubes made of highly elastic soft materials. Thin-Walled Structures, 184, 110503. doi:10.1016/j.tws.2022.110503.

Li, B. F., Wang, X. T., Lv, B. H., Yan, X. F., & Yan, C. Z. (2023). Experimental study on torsional behavior of tapered high strength thin-walled concrete-filled double-skin steel tubular columns. Structures, 55, 1823–1838. doi:10.1016/j.istruc.2023.07.001.

Weber, D. E., Graupner, N., & Müssig, J. (2023). Manufacturing of flax- and glass-fibre reinforced thin-walled tubes and measuring their interlaminar shear properties by torsion tests. Composite Structures, 319, 117191. doi:10.1016/j.compstruct.2023.117191.

Chandra, R., Stemple, A. D., & Chopra, I. (1990). Thin-walled composite beams under bending, torsional, and extensional loads. Journal of Aircraft, 27(7), 619–626. doi:10.2514/3.25331.

Salim, H. A. (1996). Modeling and application of thin-walled composite beams in bending and torsion. PhD Thesis, West Virginia University, Morgantown, United States.

Volovoi, V. V., & Hodges, D. H. (2002). Single- and multicelled composite thin-walled beams. AIAA Journal, 40(5), 960–965. doi:10.2514/2.1733.

Jung, S. N., Park, I. J., & Shin, E. S. (2007). Theory of thin-walled composite beams with single and double-cell sections. Composites Part B: Engineering, 38(2), 182–192. doi:10.1016/j.compositesb.2006.07.001.

Loughlan, J., & Ahmed, M. N. (2008). Multi-cell carbon fibre composite box beams subjected to torsion with variable twist. Thin-Walled Structures, 46(7–9), 914–924. doi:10.1016/j.tws.2008.01.010.

da Silva, G. F., Marín, J. C., & Barroso, A. (2011). Evaluation of shear flow in composite wind turbine blades. Composite Structures, 93(7), 1832–1841. doi:10.1016/j.compstruct.2011.02.002.

Rajagopalan, K. (2022). Torsion of Thin Walled Structures. Springer Nature, Singapore. doi:10.1007/978-981-16-7458-7.

Alshannaq, A. A., Bank, L. C., Scott, D. W., & Gentry, T. R. (2021). Structural Analysis of a Wind Turbine Blade Repurposed as an Electrical Transmission Pole. Journal of Composites for Construction, 25(4), 4021023. doi:10.1061/(asce)cc.1943-5614.0001136.

Dababneh, O., & Kayran, A. (2014). Design, analysis and optimization of thin walled semi-monocoque wing structures using different structural idealization in the preliminary design phase. International Journal of Structural Integrity, 5(3), 214–226. doi:10.1108/IJSI-12-2013-0050.

Bank, L. C., & Bednarczyk, P. J. (1988). A beam theory for thin-walled composite beams. Composites Science and Technology, 32(4), 265–277. doi:10.1016/0266-3538(88)90065-6.

Bank, L. C., & Kao, C. H. (1989). The influence of geometric and material design variables on the free vibration of thin-walled composite material beams. Journal of Vibration and Acoustics, 111(3), 290–297. doi:10.1115/1.3269855.

Budkowska, B. B., & Szymczak, C. (1991). Sensitivity analysis of thin-walled I-beams undergoing torsion. Thin-Walled Structures, 12(1), 51–61. doi:10.1016/0263-8231(91)90026-F.

Szymczak, C., Kreja, I., Mikulski, T., & Kujawa, M. (2003). Sensitivity Analysis of Beams and Frames Made of Thin-Walled Members. Gdansk University of Technology, Gdansk, Poland.

Szymczak, C. (2003). Sensitivity analysis of thin-walled members, problems and applications. Thin-Walled Structures, 41(2–3), 271–290. doi:10.1016/S0263-8231(02)00091-5.

Ma, Y., Wang, X., & Zuo, W. (2020). Analytical Sensitivity Analysis Method of Cross-Sectional Shape for Thin-Walled Automobile Frame Considering Global Performances. International Journal of Automotive Technology, 21(5), 1207–1216. doi:10.1007/s12239-020-0114-8.

Xu, F., Zhang, X., & Zhang, H. (2018). A review on functionally graded structures and materials for energy absorption. Engineering Structures, 171, 309–325. doi:10.1016/j.engstruct.2018.05.094.

Zhou, L., Ren, S., Liu, C., & Ma, Z. (2019). A valid inhomogeneous cell-based smoothed finite element model for the transient characteristics of functionally graded magneto-electro-elastic structures. Composite Structures, 208, 298–313. doi:10.1016/j.compstruct.2018.09.074.

Zhou, L., Ren, S., Meng, G., & Ma, Z. (2020). Node-based smoothed radial point interpolation method for electromagnetic-thermal coupled analysis. Applied Mathematical Modelling, 78, 841–862. doi:10.1016/j.apm.2019.09.047.

Chen, W., & Zuo, W. (2014). Component sensitivity analysis of conceptual vehicle body for lightweight design under static and dynamic stiffness demands. International Journal of Vehicle Design, 66(2), 107–123. doi:10.1504/IJVD.2014.064546.

Librescu, L., & Song, O. (2005). Thin-walled composite beams: theory and application. Springer, Dordrecht, Netherland.

Gaspar, B., Teixeira, A., & Soares, C. (2016). Sensitivity analysis of the IACS-CSR buckling strength requirements for stiffened panels. Maritime Technology and Engineering, CRC Press, London, United Kingdom. doi:10.1201/b21890-62.

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181(2), 259–270. doi:10.1016/j.cpc.2009.09.018.

Opgenoord, M. M. J., Allaire, D. L., & Willcox, K. E. (2016). Variance-based sensitivity analysis to support simulation- based design under uncertainty. Journal of Mechanical Design, 138(11), 111410. doi:10.1115/1.4034224.

Khandel, O., Tamimi, M. F., Soliman, M., Russell, B. W., & Waite, C. D. (2022). Reliability assessment of connections with slip-critical bolts and fillet welds in combination. Journal of Constructional Steel Research, 188, 107036. doi:10.1016/j.jcsr.2021.107036.

Leheta, H. W., & Mansour, A. E. (1997). Reliability-based method for optimal structural design of stiffened panels. Marine Structures, 10(5), 323–352. doi:10.1016/s0951-8339(96)00026-3.

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering and System Safety, 93(7), 964–979. doi:10.1016/j.ress.2007.04.002.

Castillo, E., Fernández-Canteli, A., Hadi, A. S., & López-Aenlle, M. (2007). A fatigue model with local sensitivity analysis. Fatigue & Fracture of Engineering Materials and Structures, 30(2), 149–168. doi:10.1111/j.1460-2695.2006.01099.x.

Velarde, J., Kramhøft, C., & Sørensen, J. D. (2019). Global sensitivity analysis of offshore wind turbine foundation fatigue loads. Renewable Energy, 140, 177–189. doi:10.1016/j.renene.2019.03.055.

Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1–3), 271–280. doi:10.1016/S0378-4754(00)00270-6.

Konakli, K., & Sudret, B. (2016). Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions. Journal of Computational Physics, 321, 1144–1169. doi:10.1016/j.jcp.2016.06.005.

Janon, A., Klein, T., Lagnoux, A., Nodet, M., & Prieur, C. (2014). Asymptotic normality and efficiency of two Sobol index estimators. ESAIM: Probability and Statistics, 18, 342–364. doi:10.1051/ps/2013040.

Marelli, S., & Sudret, B. (2014). UQLab: A Framework for Uncertainty Quantification in Matlab. Vulnerability, uncertainty, and risk: quantification, mitigation, and management, 2554–2563, American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784413609.257.

MATLAB-MathWorks. (2022). MATLAB: MathWorks, Inc. Natick, United States. Available online: https://www.mathworks.com/products/matlab.html (accessed on July 2024).

Kala, Z. (2005). Sensitivity analysis of the stability problems of thin-walled structures. Journal of Constructional Steel Research, 61(3), 415–422. doi:10.1016/j.jcsr.2004.08.005.

Kotełko, M., Lis, P., & Macdonald, M. (2017). Load capacity probabilistic sensitivity analysis of thin-walled beams. Thin-Walled Structures, 115, 142–153. doi:10.1016/j.tws.2017.02.007.

Alhawamdeh, M., Alajarmeh, O., Aravinthan, T., Shelley, T., Schubel, P., Mohammed, A., & Zeng, X. (2022). Design optimisation of hollow box pultruded FRP profiles using mixed integer constrained Genetic algorithm. Composite Structures, 302, 116247. doi:10.1016/j.compstruct.2022.116247.

Veers, P. S., Ashwill, T. D., Sutherland, H. J., Laird, D. L., Lobitz, D. W., Griffin, D. A., Mandell, J. F., Músial, W. D., Jackson, K., Zuteck, M., Miravete, A., Tsai, S. W., & Richmond, J. L. (2003). Trends in the design, manufacture and evaluation of wind turbine blades. Wind Energy, 6(3), 245–259. doi:10.1002/we.90.

Schubel, P. J., & Crossley, R. J. (2012). Wind turbine blade design. Energies, 5(9), 3425–3449. doi:10.3390/en5093425.

Ashby, M. F. (1994). Materials selection in mechanical design. Metallurgia Italiana, 86, 475-475.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-09-09

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Ammar A. Alshannaq, Mohammad F. Tamimi, Muʹath I. AbuQamar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message