Sensitivity and Optimization Analysis of Torsional Behavior in Multicellular Thin-Walled Tubes
Abstract
Doi: 10.28991/CEJ-2024-010-09-09
Full Text: PDF
Keywords
References
Gere, J. M., Goodno, B. J. (2017). Mechanics of Materials. Cengage Learning, Massachusetts, United States.
Oden, J., & Ripperger, E. (1981). Mechanics of elastic structures. Hemisphere Publishing Corp, Washington, United States.
Philippidis, T. P., Vassilopoulos, A. P., Katopis, K. G., & Voutsinas, S. G. (1996). THIN/PROBEAM: A software for fatigue design and analysis of composite rotor blades. Wind Engineering, 20(5), 349–362.
Jönsson, J. (1998). Determination of shear stresses, warping functions and section properties of thin-walled beams using finite elements. Computers and Structures, 68(4), 393–410. doi:10.1016/S0045-7949(98)00070-4.
Tariq, M. M., & Ahmed, M. N. (2010). Software development for shear stress distribution in multicell beams of isotropic materials. Key Engineering Materials, 442, 453–461. doi:10.4028/www.scientific.net/KEM.442.453.
Boresi, A. P., & Schmidt, R. J. (2002). Advanced mechanics of materials. John Wiley & Sons, Hoboken, United States.
Waldron, P. (1986). Sectorial properties of straight thin-walled beams. Computers and Structures, 24(1), 147–156. doi:10.1016/0045-7949(86)90344-5.
Chai Hong Yoo, & Acra, S. V. (1986). Cross-sectional properties of thin-walled multi-cellular section. Computers and Structures, 22(1), 53–61. doi:10.1016/0045-7949(86)90084-2.
Johnson, D. (1988). A Cellular Analogy for the Saint‐Venant Torsion Analysis of Solid and Hollow Sections. Computer-Aided Civil and Infrastructure Engineering, 3(2), 173–178. doi:10.1111/j.1467-8667.1988.tb00167.x.
Yoo, C. H., Kang, J., Kim, K., & Lee, K. C. (2011). Shear flow in thin-walled cellular sections. Thin-Walled Structures, 49(11), 1341–1347. doi:10.1016/j.tws.2011.02.014.
Li, L. Y., & Easterbrook, D. (2014). Free torsion of thin-walled structural members of open- and closed-sections. Applied Mathematics and Mechanics, 35(1), 25–32. doi:10.1007/s10483-014-1769-6.
Gebre, T. H., Galishnikova, V. V., Lebed, E. V., & Tupikova, E. M. (2023). Modelling of thin-walled members with restrained torsion considering the section properties. Magazine of Civil Engineering, 118(2), 11806. doi:10.34910/MCE.118.6.
He, H. N., Wang, S. Y., Xi, H. F., Xiao, H., Zhan, L., & Zhou, J. S. (2024). The large strain snap-through effect in free torsion of highly elastic soft, thin-walled tubes with exact closed-form solutions. Thin-Walled Structures, 199, 111803. doi:10.1016/j.tws.2024.111803.
Rees, D. W. A., & Alsheikh, A. M. S. (2024). Theory of Flexural Shear, Bending and Torsion for a Thin-Walled Beam of Open Section. World Journal of Mechanics, 14(03), 23–53. doi:10.4236/wjm.2024.143003.
Bank, L. C. (2006). Composites for Construction: Structural Design with FRP Materials. Wiley, Hoboken, United States. doi:10.1002/9780470121429.
Han, M. L., Wang, H. Y., Wang, S. Y., & Xiao, H. (2023). Exact large strain analysis for the Poynting effect of freely twisted thin-walled tubes made of highly elastic soft materials. Thin-Walled Structures, 184, 110503. doi:10.1016/j.tws.2022.110503.
Li, B. F., Wang, X. T., Lv, B. H., Yan, X. F., & Yan, C. Z. (2023). Experimental study on torsional behavior of tapered high strength thin-walled concrete-filled double-skin steel tubular columns. Structures, 55, 1823–1838. doi:10.1016/j.istruc.2023.07.001.
Weber, D. E., Graupner, N., & Müssig, J. (2023). Manufacturing of flax- and glass-fibre reinforced thin-walled tubes and measuring their interlaminar shear properties by torsion tests. Composite Structures, 319, 117191. doi:10.1016/j.compstruct.2023.117191.
Chandra, R., Stemple, A. D., & Chopra, I. (1990). Thin-walled composite beams under bending, torsional, and extensional loads. Journal of Aircraft, 27(7), 619–626. doi:10.2514/3.25331.
Salim, H. A. (1996). Modeling and application of thin-walled composite beams in bending and torsion. PhD Thesis, West Virginia University, Morgantown, United States.
Volovoi, V. V., & Hodges, D. H. (2002). Single- and multicelled composite thin-walled beams. AIAA Journal, 40(5), 960–965. doi:10.2514/2.1733.
Jung, S. N., Park, I. J., & Shin, E. S. (2007). Theory of thin-walled composite beams with single and double-cell sections. Composites Part B: Engineering, 38(2), 182–192. doi:10.1016/j.compositesb.2006.07.001.
Loughlan, J., & Ahmed, M. N. (2008). Multi-cell carbon fibre composite box beams subjected to torsion with variable twist. Thin-Walled Structures, 46(7–9), 914–924. doi:10.1016/j.tws.2008.01.010.
da Silva, G. F., Marín, J. C., & Barroso, A. (2011). Evaluation of shear flow in composite wind turbine blades. Composite Structures, 93(7), 1832–1841. doi:10.1016/j.compstruct.2011.02.002.
Rajagopalan, K. (2022). Torsion of Thin Walled Structures. Springer Nature, Singapore. doi:10.1007/978-981-16-7458-7.
Alshannaq, A. A., Bank, L. C., Scott, D. W., & Gentry, T. R. (2021). Structural Analysis of a Wind Turbine Blade Repurposed as an Electrical Transmission Pole. Journal of Composites for Construction, 25(4), 4021023. doi:10.1061/(asce)cc.1943-5614.0001136.
Dababneh, O., & Kayran, A. (2014). Design, analysis and optimization of thin walled semi-monocoque wing structures using different structural idealization in the preliminary design phase. International Journal of Structural Integrity, 5(3), 214–226. doi:10.1108/IJSI-12-2013-0050.
Bank, L. C., & Bednarczyk, P. J. (1988). A beam theory for thin-walled composite beams. Composites Science and Technology, 32(4), 265–277. doi:10.1016/0266-3538(88)90065-6.
Bank, L. C., & Kao, C. H. (1989). The influence of geometric and material design variables on the free vibration of thin-walled composite material beams. Journal of Vibration and Acoustics, 111(3), 290–297. doi:10.1115/1.3269855.
Budkowska, B. B., & Szymczak, C. (1991). Sensitivity analysis of thin-walled I-beams undergoing torsion. Thin-Walled Structures, 12(1), 51–61. doi:10.1016/0263-8231(91)90026-F.
Szymczak, C., Kreja, I., Mikulski, T., & Kujawa, M. (2003). Sensitivity Analysis of Beams and Frames Made of Thin-Walled Members. Gdansk University of Technology, Gdansk, Poland.
Szymczak, C. (2003). Sensitivity analysis of thin-walled members, problems and applications. Thin-Walled Structures, 41(2–3), 271–290. doi:10.1016/S0263-8231(02)00091-5.
Ma, Y., Wang, X., & Zuo, W. (2020). Analytical Sensitivity Analysis Method of Cross-Sectional Shape for Thin-Walled Automobile Frame Considering Global Performances. International Journal of Automotive Technology, 21(5), 1207–1216. doi:10.1007/s12239-020-0114-8.
Xu, F., Zhang, X., & Zhang, H. (2018). A review on functionally graded structures and materials for energy absorption. Engineering Structures, 171, 309–325. doi:10.1016/j.engstruct.2018.05.094.
Zhou, L., Ren, S., Liu, C., & Ma, Z. (2019). A valid inhomogeneous cell-based smoothed finite element model for the transient characteristics of functionally graded magneto-electro-elastic structures. Composite Structures, 208, 298–313. doi:10.1016/j.compstruct.2018.09.074.
Zhou, L., Ren, S., Meng, G., & Ma, Z. (2020). Node-based smoothed radial point interpolation method for electromagnetic-thermal coupled analysis. Applied Mathematical Modelling, 78, 841–862. doi:10.1016/j.apm.2019.09.047.
Chen, W., & Zuo, W. (2014). Component sensitivity analysis of conceptual vehicle body for lightweight design under static and dynamic stiffness demands. International Journal of Vehicle Design, 66(2), 107–123. doi:10.1504/IJVD.2014.064546.
Librescu, L., & Song, O. (2005). Thin-walled composite beams: theory and application. Springer, Dordrecht, Netherland.
Gaspar, B., Teixeira, A., & Soares, C. (2016). Sensitivity analysis of the IACS-CSR buckling strength requirements for stiffened panels. Maritime Technology and Engineering, CRC Press, London, United Kingdom. doi:10.1201/b21890-62.
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181(2), 259–270. doi:10.1016/j.cpc.2009.09.018.
Opgenoord, M. M. J., Allaire, D. L., & Willcox, K. E. (2016). Variance-based sensitivity analysis to support simulation- based design under uncertainty. Journal of Mechanical Design, 138(11), 111410. doi:10.1115/1.4034224.
Khandel, O., Tamimi, M. F., Soliman, M., Russell, B. W., & Waite, C. D. (2022). Reliability assessment of connections with slip-critical bolts and fillet welds in combination. Journal of Constructional Steel Research, 188, 107036. doi:10.1016/j.jcsr.2021.107036.
Leheta, H. W., & Mansour, A. E. (1997). Reliability-based method for optimal structural design of stiffened panels. Marine Structures, 10(5), 323–352. doi:10.1016/s0951-8339(96)00026-3.
Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering and System Safety, 93(7), 964–979. doi:10.1016/j.ress.2007.04.002.
Castillo, E., Fernández-Canteli, A., Hadi, A. S., & López-Aenlle, M. (2007). A fatigue model with local sensitivity analysis. Fatigue & Fracture of Engineering Materials and Structures, 30(2), 149–168. doi:10.1111/j.1460-2695.2006.01099.x.
Velarde, J., Kramhøft, C., & Sørensen, J. D. (2019). Global sensitivity analysis of offshore wind turbine foundation fatigue loads. Renewable Energy, 140, 177–189. doi:10.1016/j.renene.2019.03.055.
Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1–3), 271–280. doi:10.1016/S0378-4754(00)00270-6.
Konakli, K., & Sudret, B. (2016). Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions. Journal of Computational Physics, 321, 1144–1169. doi:10.1016/j.jcp.2016.06.005.
Janon, A., Klein, T., Lagnoux, A., Nodet, M., & Prieur, C. (2014). Asymptotic normality and efficiency of two Sobol index estimators. ESAIM: Probability and Statistics, 18, 342–364. doi:10.1051/ps/2013040.
Marelli, S., & Sudret, B. (2014). UQLab: A Framework for Uncertainty Quantification in Matlab. Vulnerability, uncertainty, and risk: quantification, mitigation, and management, 2554–2563, American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784413609.257.
MATLAB-MathWorks. (2022). MATLAB: MathWorks, Inc. Natick, United States. Available online: https://www.mathworks.com/products/matlab.html (accessed on July 2024).
Kala, Z. (2005). Sensitivity analysis of the stability problems of thin-walled structures. Journal of Constructional Steel Research, 61(3), 415–422. doi:10.1016/j.jcsr.2004.08.005.
Kotełko, M., Lis, P., & Macdonald, M. (2017). Load capacity probabilistic sensitivity analysis of thin-walled beams. Thin-Walled Structures, 115, 142–153. doi:10.1016/j.tws.2017.02.007.
Alhawamdeh, M., Alajarmeh, O., Aravinthan, T., Shelley, T., Schubel, P., Mohammed, A., & Zeng, X. (2022). Design optimisation of hollow box pultruded FRP profiles using mixed integer constrained Genetic algorithm. Composite Structures, 302, 116247. doi:10.1016/j.compstruct.2022.116247.
Veers, P. S., Ashwill, T. D., Sutherland, H. J., Laird, D. L., Lobitz, D. W., Griffin, D. A., Mandell, J. F., Músial, W. D., Jackson, K., Zuteck, M., Miravete, A., Tsai, S. W., & Richmond, J. L. (2003). Trends in the design, manufacture and evaluation of wind turbine blades. Wind Energy, 6(3), 245–259. doi:10.1002/we.90.
Schubel, P. J., & Crossley, R. J. (2012). Wind turbine blade design. Energies, 5(9), 3425–3449. doi:10.3390/en5093425.
Ashby, M. F. (1994). Materials selection in mechanical design. Metallurgia Italiana, 86, 475-475.
DOI: 10.28991/CEJ-2024-010-09-09
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ammar A. Alshannaq, Mohammad F. Tamimi, Muʹath I. AbuQamar

This work is licensed under a Creative Commons Attribution 4.0 International License.