Evaluation of Tidal Energy Potential Using a Two-Way Tidal Energy Model

A. Aliffathur Rusvan, Farouk Maricar, M. Arsyad Thaha, Chairul Paotonan

Abstract


Tidal energy is a renewable energy source that provides sustainable energy through the utilization of tidal differences, making it a very promising option. This study examines a more effective tidal energy reservoir model by building a 1:100 scale prototype in the laboratory with several predetermined variations, namely an earthen pond (100, 80, and 60 cm), and flow holes (1.5, 1, and 0.5 cm) with initial tidal height differences of 10 cm, 15 cm, and 20 cm. The model uses a 6-hour time period, which corresponds to a semidiurnal tidal model. The results showed that the highest energy output was 281.84 kWh, achieved with a 1.5 cm flow hole, 20 cm tidal height difference for the initial condition, and 80 cm pond width. For a 1 cm flow hole, the outputs were 1774.8 kWh and 1803.78 kWh for 15 cm and 20 cm tidal height difference for the initial condition with a pond width of 100 cm. Meanwhile, the 0.5 cm flow hole produces potential energy outputs of 2623.8 kWh and 2611.4 kWh for different tidal heights of 15 cm and 20 cm for the initial condition with a pond width of 100 cm. Better model performance can be connected to a mini generator to validate the energy generated from the designed prototype model.

 

Doi: 10.28991/CEJ-2024-010-09-016

Full Text: PDF


Keywords


Renewable Energy; Tidal Energy; Prototype Model; Potential Energy.

References


Yi, J., Dai, S., Li, L., & Cheng, J. (2024). How does digital economy development affect renewable energy innovation? Renewable and Sustainable Energy Reviews, 192, 114221. doi:10.1016/j.rser.2023.114221

Bogdanov, D., Ram, M., Aghahosseini, A., Gulagi, A., Oyewo, A. S., Child, M., ... & Breyer, C. (2021). Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 227, 120467. doi:10.1016/j.energy.2021.120467.

Rahman, A., Farrok, O., & Haque, M. M. (2022). Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews, 161, 112279. doi:10.1016/j.rser.2022.112279.

Pasaribu, R., Kabul Pranoto, A., Rahman, A., & Ayu, D. (2024). Pemodelan Pola Arus Pasang Surut Menggunakan Mike 21 Di Perairan Jakarta - Cirebon. Maspari Journal - Marine Science Research, 16(1), 20–30. doi:10.56064/maspari.v16i1.9.

Li, Z., Siddiqi, A., Anadon, L. D., & Narayanamurti, V. (2018). Towards sustainability in water-energy nexus: Ocean energy for seawater desalination. Renewable and Sustainable Energy Reviews, 82, 3833-3847. doi:10.1016/j.rser.2017.10.087.

Nurman, S., Kurniawan, D., & Azis, M. (2024). Overview of The Potential of Marine Energy as Renewable Energy Sources. Jurnal Maritim Malahayati (JuMMa), 5(1), 150–155.

Mamat, R., Sani, M. S. M., & Sudhakar, K.J.S.O.T.T.E. (2019). Renewable energy in Southeast Asia: Policies and recommendations. Science of the Total Environment, 670, 1095-1102. doi:10.1016/j.scitotenv.2019.03.273.

Qin, Z., Tang, X., Wu, Y. T., & Lyu, S. K. (2022). Advancement of Tidal Current Generation Technology in Recent Years: A Review. Energies, 15(21), 1–18. doi:10.3390/en15218042.

Serowaniec, M. (2021). Sustainable development policy and renewable energy in poland. Energies, 14(8), 6–76 – 3025–1311. doi:10.3390/en14082244.

Korte, A., Windt, C., & Goseberg, N. (2024). Review and assessment of the German tidal energy resource. Journal of Ocean Engineering and Marine Energy, 10(1), 239–261. doi:10.1007/s40722-023-00309-7.

Li, L., Gao, Y., Yuan, Z., Day, S., & Hu, Z. (2018). Dynamic response and power production of a floating integrated wind, wave and tidal energy system. Renewable energy, 116, 412-422. doi:10.1016/j.renene.2017.09.080.

Sa’adi, Z., Ismail, A. Z., Yusop, Z., & Mohamad Yusof, Z. (2022). Effect of the tide on flood modeling and mapping in Kota Tinggi, Johor, Malaysia. Natural Hazards, 112(3), 2053-2081. doi:10.1007/s11069-022-05256-4.

Koto, J., Arief, D. S., Tasri, A., & Kamil, I. (2018). Ocean Thermal Energy Conversion in Indonesia, Malaysia and Philippines. International Journal of Environmental Research & Clean Energy, 12(1), 20-25.

Naberezhnykh, A., Ingram, D., Ashton, I., & Culina, J. (2023). How Applicable Are Turbulence Assumptions Used in the Tidal Energy Industry? Energies, 16(4), 1–21. doi:10.3390/en16041881.

Mariswamy, M. M. (2022). An Exploration of Tidal Energy Generation and Usage. Special Issue on Energy Power Generation. Trans Asian Research Journal, 11(6), 2279–0667.

Khare, V., Khare, C. J., & Bhuiyan, M. A. (2023). Prediction of tidal energy resources at Gulf of Kutch and Gulf of Khambhat by data mining. Cleaner Energy Systems, 6, 1–12. doi:10.1016/j.cles.2023.100090.

Finnegan, W., Jiang, Y., Meier, P., Hung, L. C., Fagan, E., Wallace, F., Glennon, C., Flanagan, M., Flanagan, T., & Goggins, J. (2022). Numerical modelling, manufacture and structural testing of a full-scale 1 MW tidal turbine blade. Ocean Engineering, 266, 1–15. doi:10.1016/j.oceaneng.2022.112717.

Khojasteh, D., Shamsipour, A., Huang, L., Tavakoli, S., Haghani, M., Flocard, F., Farzadkhoo, M., Iglesias, G., Hemer, M., Lewis, M., Neill, S., Bernitsas, M. M., & Glamore, W. (2023). A large-scale review of wave and tidal energy research over the last 20 years. Ocean Engineering, 282(114995), 1–18. doi:10.1016/j.oceaneng.2023.114995.

Vandercruyssen, D., Baker, S., Howard, D., & Aggidis, G. (2022). Tidal range electricity generation: A comparison between estuarine barrages and coastal lagoons. Heliyon, 8(11), 1–11. doi:10.1016/j.heliyon.2022.e11381.

Vandercruyssen, D., Howard, D., & Aggidis, G. (2022). A model of the costs for tidal range power generation schemes. Proceedings of Institution of Civil Engineers: Energy, 176(4), 177–186. doi:10.1680/jener.22.00058.

Junianto, S., Purnamasari, I., Habibi, M. N., Daffa, M. Z., & Yudiprasetyo, N. B. (2024). Utilization of Altimetry Satellite Data in Investigating the Energy Potential of Tidal Current. ROTASI, 26(1), 35-43. doi:10.14710/rotasi.26.1.35-43.

Khurshid, H., Mohammed, B. S., Al-Yacoubya, A. M., Liew, M. S., & Zawawi, N. A. W. A. (2024). Analysis of hybrid offshore renewable energy sources for power generation: a literature review of hybrid solar, wind, and waves energy systems. Developments in the Built Environment, 100497. doi:10.1016/j.dibe.2024.100497.

Abdalla, A. N., Nazir, M. S., Tao, H., Cao, S., Ji, R., Jiang, M., & Yao, L. (2021). Integration of energy storage system and renewable energy sources based on artificial intelligence: An overview. Journal of Energy Storage, 40, 102811. doi:10.1016/j.est.2021.102811.

Wulandari, S., Ismanto, A., & Sugianto, D. N. (2023, August). Two-dimensional Hydrodynamic Simulation in Labuan Bajo Waters, Indonesia. IOP Conference Series: Earth and Environmental Science, 1224(1), 012031. doi:10.1088/1755-1315/1224/1/012031.

Sleiti, A. K. (2017). Tidal power technology review with potential applications in Gulf Stream. Renewable and Sustainable Energy Reviews, 69, 435-441. doi:10.1016/j.rser.2016.11.150.

Khalid, S. S., & Shah, Z. L. N. (2013). Research Article Harnessing Tidal Energy Using Vertical Axis Tidal Turbine. Research Journal of Applied Sciences, Engineering and Technology, 5(1), 239-252. doi:10.19026/rjaset.5.5112.

Prakoso, S. A. A., & Mulyanto, T. (2022). Design and Simulation of Tidal Turbine Performance Prototype Propeller Type Naca S814 as Energy Source for Salt Farmers in Cirebon Area. Jurnal Pendidikan Teknik Mesin Undiksha, 10(1), 86–103. doi:10.23887/jptm.v10i1.45389.

Vidura, A., W, R. L., Studi, P., Energi, K., Pertahanan, F. M., Ri, U., Teknik, D., Kelautan, F. T., & Sepuluh, I. T. (2022). Potential Utilization of Ocean Wave Power Plant in South Waters of Java Island for Supporting Energy Security. Ketahanan Energi, 8(1), 33–38.

Khare, V., & Bhuiyan, M. A. (2022). Tidal energy-path towards sustainable energy: A technical review. Cleaner Energy Systems, 3(100041), 1–16. doi:10.1016/j.cles.2022.100041.

Pelc, R., & Fujita, R. M. (2002). Renewable energy from the ocean. Marine policy, 26(6), 471-479. doi:10.1016/S0308-597X(02)00045-3.

Do, H. T., Nguyen, T. B., & Ly, T. M. (2022). Tidal energy potential in coastal Vietnam. Ministry of Science and Technology, Vietnam, 64(1), 85–89. doi:10.31276/vjste.64(1).85-89.

Suryaningsih, R. (2014). Study on wave energy into electricity in the South Coast of Yogyakarta, Indonesia. Energy Procedia, 47, 149-155. doi:10.1016/j.egypro.2014.01.208.

Kangaji, L., Orumwense, E., & Abo-Al-ez, K. (2022). Modelling and simulation of tidal energy generation system: a systematic literature review. International Journal of Advanced Technology and Engineering Exploration, 9(92), 1028–1055. doi:10.19101/IJATEE.2021.875704.

Peng, X., Liu, Z., & Jiang, D. (2021). A review of multiphase energy conversion in wind power generation. Renewable and Sustainable Energy Reviews, 147, 111172. doi:10.1016/j.rser.2021.111172.

Ding, Y., Bao, X., Yu, H., & Kuang, L. (2012). A numerical study of the barotropic tides and tidal energy distribution in the Indonesian seas with the assimilated finite volume coastal ocean model. Ocean Dynamics, 62, 515-532. doi:10.1007/s10236-011-0518-0.

Langer, J., Quist, J., & Blok, K. (2021). Review of renewable energy potentials in Indonesia and their contribution to a 100% renewable electricity system. Energies, 14(21), 7033. doi:10.3390/en14217033.

Hanousek, N. (2023). Numerical Modelling of Tidal Energy Devices and Structures as part of Net Zero. Hydro-environmental Research Centre School of Engineering Cardiff University, Cardiff, Wales.

Sahir, M. H., & Qureshi, A. H. (2008). Assessment of new and renewable energy resources potential and identification of barriers to their significant utilization in Pakistan. Renewable and Sustainable Energy Reviews, 12(1), 290-298. doi:10.1016/j.rser.2006.07.002

Dona Yustea (2015). Aplikasi Termodinamika Dalam Bidang Kelautan. Available online: https://clubtermodinamika.blogspot.com/ (accessed on August 2024).

Rakhman.net (2024). Pembangkit Listrik Pasang Surut Air Laut (Energi Tidal). Available online: https://rakhman.net/power-plants-id/pembangkit-listrik-pasang-surut-air-laut-energi-tidal/ (accessed on August 2024).

Marinas.com (2024). Annapolis Tidal Power Generating Station, North Landmark. Available online: https://marinas.com/view/landmark/86s4n_Annapolis_Tidal_Power_Generating_Station_North_Landmark_Annapolis_Royal_NS_Canada (accessed on August 2024).

Skiarski, A., Faedo, N., & Ringwood, J. V. (2024). Optimisation and control of tidal range power plants operation: Is there scope for further improvement? Energy Conversion and Management: X, 23, 1–20. doi:10.1016/j.ecmx.2024.100657.

Charlier, R. H. (2007). Forty candles for the Rance River TPP tides provide renewable and sustainable power generation. Renewable and Sustainable Energy Reviews, 11(9), 2032-2057. doi:10.1016/j.rser.2006.03.015.

Khare, V., Khare, C., Nema, S., & Baredar, P. (2019). Introduction of tidal energy. Tidal energy systems: design, optimization and control, 2, 41-114.

Li, Y., & Ma, C. (2020). Development and management of ocean energy in China. In IOP Conference Series: Earth and Environmental Science, 467(1), 012207. doi:10.1088/1755-1315/467/1/012207.

Li, Y., & Pan, D. Z. (2017). The ebb and flow of tidal barrage development in Zhejiang Province, China. Renewable and Sustainable Energy Reviews, 80, 380-389. doi:10.1016/j.rser.2017.05.122.

Chaineux, M. C., & Charlier, R. H. (2008). Women's tidal power plant Forty candles for Kislaya Guba TPP. Renewable and Sustainable Energy Reviews, 12(9), 2515-2524. doi:10.1016/j.rser.2007.03.013.

Wang, Z. J., & Wang, Z. W. (2019, March). A review on tidal power utilization and operation optimization. IOP Conference Series: Earth and Environmental Science, 240(5), 052015. doi:10.1088/1755-1315/240/5/052015.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-09-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 ahmad aliffathur rusvan, Farouk Maricar, muhammad arsyad thaha, Chairul Paotonan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message