Seismic Isolators Layout Optimization Using Genetic Algorithm Within the Pymoo Framework
Downloads
Doi: 10.28991/CEJ-2024-010-08-07
Full Text: PDF
Downloads
[2] JSSI (2024). The Japan Society of Seismic Isolation, Tokyo, Japan. Available online: https://en.jssi.or.jp/en/ (accessed on July 2024).
[3] Warn, G. P., & Ryan, K. L. (2012). A review of seismic isolation for buildings: Historical development and research needs. Buildings, 2(3), 300–325. doi:10.3390/buildings2030300.
[4] Naeim, F., & Kelly, J. M. (1999). Design of Seismic Isolated Structures. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172742.
[5] Shiravand, M. R., Ketabdari, H., & Rasouli, M. (2022). Optimum arrangement investigation of LRB and FPS isolators for seismic response control in irregular buildings. Structures, 39, 1031–1044. doi:10.1016/j.istruc.2022.03.070.
[6] Hu, G. J., Ye, K., & Tang, Z. Y. (2023). Design and analysis of LRB base-isolated building structure for multilevel performance targets. Structures, 57, 105236. doi:10.1016/j.istruc.2023.105236.
[7] Bridgestone. (2017). Seismic Isolation Product Line-Up. Bridgestone, Tennessee, United States.
[8] Zhang, Z., Tian, X., & Ge, X. (2021). Dynamic characteristics of the bouc–wen nonlinear isolation system. Applied Sciences (Switzerland), 11(13), 6106. doi:10.3390/app11136106.
[9] Gallardo, J. A., de la Llera, J. C., Restrepo, J. I., & Chen, M. (2023). A numerical model for non-linear shear behavior of high damping rubber bearings. Engineering Structures, 289, 116234. doi:10.1016/j.engstruct.2023.116234.
[10] Dai, K., Yang, Y., Li, T., Ge, Q., Wang, J., Wang, B., Chen, P., & Huang, Z. (2022). Seismic analysis of a base-isolated reinforced concrete frame using high damping rubber bearings considering hardening characteristics and bidirectional coupling effect. Structures, 46, 698–712. doi:10.1016/j.istruc.2022.10.111.
[11] Zhou, Z., Li, Y., & Hu, X. (2022). Analysis method of isolation layer composed of high damping rubber bearings based on deformation history integral type model. Engineering Structures, 252, 113553. doi:10.1016/j.engstruct.2021.113553.
[12] Hu, X., & Zhou, Z. (2020). Seismic analysis of a reinforced concrete building isolated by high damping rubber bearings using deformation history integral type model. Structural Design of Tall and Special Buildings, 29(18), 1811. doi:10.1002/tal.1811.
[13] Kazeminezhad, E., Kazemi, M. T., & Mirhosseini, S. M. (2020). Modified procedure of lead rubber isolator design used in the reinforced concrete building. Structures, 27, 2245–2273. doi:10.1016/j.istruc.2020.07.056.
[14] Losanno, D., Hadad, H. A., & Serino, G. (2019). Design charts for eurocode-based design of elastomeric seismic isolation systems. Soil Dynamics and Earthquake Engineering, 119, 488–498. doi:10.1016/j.soildyn.2017.12.017.
[15] Ye, K., Xiao, Y., & Hu, L. (2019). A direct displacement-based design procedure for base-isolated building structures with lead rubber bearings (LRBs). Engineering Structures, 197, 109402. doi:10.1016/j.engstruct.2019.109402.
[16] Lopez-Almansa, F., Piscal, C. M., Carrillo, J., Leiva-Maldonado, S. L., & Moscoso, Y. F. M. (2022). Survey on Major Worldwide Regulations on Seismic Base Isolation of Buildings. Advances in Civil Engineering, 2022, 1–16. doi:10.1155/2022/6162698.
[17] Wu, T. C. (2001). Design of base isolation system for buildings. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, United States.
[18] Mayes, R.L., Naeim, F. (2001). Design of Structures with Seismic Isolation. The Seismic Design Handbook, Springer, Boston, United States. doi:10.1007/978-1-4615-1693-4_14.
[19] Keikha, H., & Amiri, G. G. (2023). Developing a simplified method for analysis and design of isolated structures with the novel quintuple friction pendulum system under bidirectional near-field excitations. JVC/Journal of Vibration and Control, 29(1–2), 453–465. doi:10.1177/10775463211048261.
[20] Pourzeynali, S., & Zarif, M. (2008). Multi-objective optimization of seismically isolated high-rise building structures using genetic algorithms. Journal of Sound and Vibration, 311(3–5), 1141–1160. doi:10.1016/j.jsv.2007.10.008.
[21] Bakhshinezhad, S., & Mohebbi, M. (2020). Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II. Structures, 24, 678–689. doi:10.1016/j.istruc.2020.02.004.
[22] Tsipianitis, A., & Tsompanakis, Y. (2021). Optimizing the seismic response of base-isolated liquid storage tanks using swarm intelligence algorithms. Computers & Structures, 243, 106407. doi:10.1016/j.compstruc.2020.106407.
[23] Tsipianitis, A., Spachis, A., & Tsompanakis, Y. (2022). Combined Optimization of Friction-Based Isolators in Liquid Storage Tanks. Applied Sciences (Switzerland), 12(19), 9879. doi:10.3390/app12199879.
[24] Zou, Z., & Yan, Q. (2022). Artificial Intelligence Algorithm-Based Arrangement Optimization of Structural Isolation Bearings. Applied Sciences (Switzerland), 12(24), 12629. doi:10.3390/app122412629.
[25] Babaei, M., Taghaddosi, N., & Seraji, N. (2023). Optimal Design of MR Dampers Using NSGA-II Algorithm. Journal of Soft Computing in Civil Engineering, 7(1), 72–92. doi:10.22115/SCCE.2022.347247.1466.
[26] Çerçevik, A. E., Avşar, Ö., & Hasançebi, O. (2020). Optimum design of seismic isolation systems using metaheuristic search methods. Soil Dynamics and Earthquake Engineering, 131, 106012. doi:10.1016/j.soildyn.2019.106012.
[27] Pal, S., Hassan, A., & Singh, D. (2019). Optimization of base isolation parameters using genetic algorithm. Journal of Statistics and Management Systems, 22(7), 1207–1222. doi:10.1080/09720510.2019.1614338.
[28] Dang, Y., Zhao, G. X., Tian, H. T., & Li, G. (2021). Two-Stage Optimization Method for the Bearing Layout of Isolated Structure. Advances in Civil Engineering, 2021, 1–10. doi:10.1155/2021/4895176.
[29] Fallah, N., & Zamiri, G. (2013). Multi-objective optimal design of sliding base isolation using genetic algorithm. Scientia Iranica, 20(1), 87–96. doi:10.1016/j.scient.2012.11.004.
[30] Fallah, N., & Honarparast, S. (2013). NSGA-II based multi-objective optimization in design of Pall friction dampers. Journal of Constructional Steel Research, 89, 75–85. doi:10.1016/j.jcsr.2013.06.008.
[31] Song, Z., Zhai, C., Ma, Y., Wang, Z., & Pei, S. (2024). Multi-stage and multi-objective design optimization for improving resilience of base-isolated hospital buildings. Engineering Structures, 304, 117644. doi:10.1016/j.engstruct.2024.117644.
[32] Kandemir, E. C., & Mortazavi, A. (2022). Optimization of Seismic Base Isolation System Using a Fuzzy Reinforced Swarm Intelligence. Advances in Engineering Software, 174, 103323. doi:10.1016/j.advengsoft.2022.103323.
[33] Ocak, A., Nigdeli, S. M., Bekdaş, G., Kim, S., & Geem, Z. W. (2022). Optimization of Seismic Base Isolation System Using Adaptive Harmony Search Algorithm. Sustainability (Switzerland), 14(12), 7456. doi:10.3390/su14127456.
[34] Taymus, R. B., Aydogdu, I., Carbas, S., & Ormecioglu, T. O. (2024). Seismic design optimization of space steel frame buildings equipped with triple friction pendulum base isolators. Journal of Building Engineering, 92, 109748. doi:10.1016/j.jobe.2024.109748.
[35] Öncü-Davas, S., Temür, R., & Alhan, C. (2022). Comparison of meta-heuristic approaches for the optimization of non-linear base-isolation systems considering the influence of superstructure flexibility. Engineering Structures, 263, 114347. doi:10.1016/j.engstruct.2022.114347.
[36] Ocak, A., Melih Nigdeli, S., & Bekdaş, G. (2023). Optimization of the base isolator systems by considering the soil-structure interaction via metaheuristic algorithms. Structures, 56, 104886. doi:10.1016/j.istruc.2023.104886.
[37] Blank, J., & Deb, K. (2020). Pymoo: Multi-Objective Optimization in Python. IEEE Access, 8, 89497–89509. doi:10.1109/ACCESS.2020.2990567.
[38] Murota, N., Suzuki, S., Mori, T., Wakishima, K., Sadan, B., Tuzun, C., Sutcu, F., & Erdik, M. (2021). Performance of high-damping rubber bearings for seismic isolation of residential buildings in Turkey. Soil Dynamics and Earthquake Engineering, 143, 106620. doi:10.1016/j.soildyn.2021.106620.
[39] Pan, P., Zamfirescu, D., Nakashima, M., Nakayasu, N., & Kashiwa, H. (2005). Base-isolation design practice in japan: Introduction to the post-kobe approach. Journal of Earthquake Engineering, 9(1), 147–171. doi:10.1080/13632460509350537.
[40] GB50011-2010. (2010). Code for seismic design of buildings. Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
[41] ASCE/SEI 7-16. (2017). Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers (ASCE), Reston, United States.
[42] ASCE (2024). ASCE Hazard Tool. American Society of Civil Engineers (ASCE), Reston, United States. Available online: https://gis.asce.org/beta-7-22/ (accessed on July 2024).
[43] Belbachir, A., Benanane, A., Ouazir, A., Harrat, Z. R., Hadzima-Nyarko, M., Radu, D., Işık, E., Louhibi, Z. S. M., & Amziane, S. (2023). Enhancing the Seismic Response of Residential RC Buildings with an Innovative Base Isolation Technique. Sustainability (Switzerland), 15(15), 11624. doi:10.3390/su151511624.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.