Seismic Isolators Layout Optimization Using Genetic Algorithm Within the Pymoo Framework

Adil El Ouardani, Taoufik Tbatou

Abstract


In most previous studies, seismic base isolation system optimization has mainly focused on determining isolation layer parameters. However, the subsequent steps of isolator device selection and positioning can significantly impact overall system performance. To address these shortcomings, we propose an alternative optimization approach demonstrated through two models: regular and irregular 8-storey reinforced concrete structures. This approach utilizes the Pymoo framework and commercially available isolators to find optimal isolator layout configurations in two steps. First, using the equivalent lateral force (ELF) procedure, an initial population of seismic isolators meeting shear strain, base shear coefficient, and buckling requirements was randomly selected from suppliers' elastomeric bearing catalogs. Second, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) was used to improve the seismic response of the models under the fast nonlinear analysis (FNA) method by minimizing peak roof acceleration, inter-story drift ratio, displacement of the isolated base layer, as well as maximizing the fundamental period. The results underscore the effectiveness of this approach in improving seismic response. Compared to fixed-base structures, the optimal solutions achieved more than double the fundamental period, reduced peak roof acceleration by over 70%, and diminished base shear force by approximately 50%. This methodology can serve as a reference for future research across various structure types, including hybrid isolation systems and steel structures.

 

Doi: 10.28991/CEJ-2024-010-08-07

Full Text: PDF


Keywords


Seismic Isolation; Metaheuristic Algorithms; Rubber Bearings; Multi Objective Optimization; Pymoo.

References


Yenidogan, C. (2021). Earthquake-Resilient Design of Seismically Isolated Buildings: A Review of Technology. Vibration, 4(3), 602–647. doi:10.3390/vibration4030035.

JSSI (2024). The Japan Society of Seismic Isolation, Tokyo, Japan. Available online: https://en.jssi.or.jp/en/ (accessed on July 2024).

Warn, G. P., & Ryan, K. L. (2012). A review of seismic isolation for buildings: Historical development and research needs. Buildings, 2(3), 300–325. doi:10.3390/buildings2030300.

Naeim, F., & Kelly, J. M. (1999). Design of Seismic Isolated Structures. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172742.

Shiravand, M. R., Ketabdari, H., & Rasouli, M. (2022). Optimum arrangement investigation of LRB and FPS isolators for seismic response control in irregular buildings. Structures, 39, 1031–1044. doi:10.1016/j.istruc.2022.03.070.

Hu, G. J., Ye, K., & Tang, Z. Y. (2023). Design and analysis of LRB base-isolated building structure for multilevel performance targets. Structures, 57, 105236. doi:10.1016/j.istruc.2023.105236.

Bridgestone. (2017). Seismic Isolation Product Line-Up. Bridgestone, Tennessee, United States.

Zhang, Z., Tian, X., & Ge, X. (2021). Dynamic characteristics of the bouc–wen nonlinear isolation system. Applied Sciences (Switzerland), 11(13), 6106. doi:10.3390/app11136106.

Gallardo, J. A., de la Llera, J. C., Restrepo, J. I., & Chen, M. (2023). A numerical model for non-linear shear behavior of high damping rubber bearings. Engineering Structures, 289, 116234. doi:10.1016/j.engstruct.2023.116234.

Dai, K., Yang, Y., Li, T., Ge, Q., Wang, J., Wang, B., Chen, P., & Huang, Z. (2022). Seismic analysis of a base-isolated reinforced concrete frame using high damping rubber bearings considering hardening characteristics and bidirectional coupling effect. Structures, 46, 698–712. doi:10.1016/j.istruc.2022.10.111.

Zhou, Z., Li, Y., & Hu, X. (2022). Analysis method of isolation layer composed of high damping rubber bearings based on deformation history integral type model. Engineering Structures, 252, 113553. doi:10.1016/j.engstruct.2021.113553.

Hu, X., & Zhou, Z. (2020). Seismic analysis of a reinforced concrete building isolated by high damping rubber bearings using deformation history integral type model. Structural Design of Tall and Special Buildings, 29(18), 1811. doi:10.1002/tal.1811.

Kazeminezhad, E., Kazemi, M. T., & Mirhosseini, S. M. (2020). Modified procedure of lead rubber isolator design used in the reinforced concrete building. Structures, 27, 2245–2273. doi:10.1016/j.istruc.2020.07.056.

Losanno, D., Hadad, H. A., & Serino, G. (2019). Design charts for eurocode-based design of elastomeric seismic isolation systems. Soil Dynamics and Earthquake Engineering, 119, 488–498. doi:10.1016/j.soildyn.2017.12.017.

Ye, K., Xiao, Y., & Hu, L. (2019). A direct displacement-based design procedure for base-isolated building structures with lead rubber bearings (LRBs). Engineering Structures, 197, 109402. doi:10.1016/j.engstruct.2019.109402.

Lopez-Almansa, F., Piscal, C. M., Carrillo, J., Leiva-Maldonado, S. L., & Moscoso, Y. F. M. (2022). Survey on Major Worldwide Regulations on Seismic Base Isolation of Buildings. Advances in Civil Engineering, 2022, 1–16. doi:10.1155/2022/6162698.

Wu, T. C. (2001). Design of base isolation system for buildings. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, United States.

Mayes, R.L., Naeim, F. (2001). Design of Structures with Seismic Isolation. The Seismic Design Handbook, Springer, Boston, United States. doi:10.1007/978-1-4615-1693-4_14.

Keikha, H., & Amiri, G. G. (2023). Developing a simplified method for analysis and design of isolated structures with the novel quintuple friction pendulum system under bidirectional near-field excitations. JVC/Journal of Vibration and Control, 29(1–2), 453–465. doi:10.1177/10775463211048261.

Pourzeynali, S., & Zarif, M. (2008). Multi-objective optimization of seismically isolated high-rise building structures using genetic algorithms. Journal of Sound and Vibration, 311(3–5), 1141–1160. doi:10.1016/j.jsv.2007.10.008.

Bakhshinezhad, S., & Mohebbi, M. (2020). Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II. Structures, 24, 678–689. doi:10.1016/j.istruc.2020.02.004.

Tsipianitis, A., & Tsompanakis, Y. (2021). Optimizing the seismic response of base-isolated liquid storage tanks using swarm intelligence algorithms. Computers & Structures, 243, 106407. doi:10.1016/j.compstruc.2020.106407.

Tsipianitis, A., Spachis, A., & Tsompanakis, Y. (2022). Combined Optimization of Friction-Based Isolators in Liquid Storage Tanks. Applied Sciences (Switzerland), 12(19), 9879. doi:10.3390/app12199879.

Zou, Z., & Yan, Q. (2022). Artificial Intelligence Algorithm-Based Arrangement Optimization of Structural Isolation Bearings. Applied Sciences (Switzerland), 12(24), 12629. doi:10.3390/app122412629.

Babaei, M., Taghaddosi, N., & Seraji, N. (2023). Optimal Design of MR Dampers Using NSGA-II Algorithm. Journal of Soft Computing in Civil Engineering, 7(1), 72–92. doi:10.22115/SCCE.2022.347247.1466.

Çerçevik, A. E., Avşar, Ö., & Hasançebi, O. (2020). Optimum design of seismic isolation systems using metaheuristic search methods. Soil Dynamics and Earthquake Engineering, 131, 106012. doi:10.1016/j.soildyn.2019.106012.

Pal, S., Hassan, A., & Singh, D. (2019). Optimization of base isolation parameters using genetic algorithm. Journal of Statistics and Management Systems, 22(7), 1207–1222. doi:10.1080/09720510.2019.1614338.

Dang, Y., Zhao, G. X., Tian, H. T., & Li, G. (2021). Two-Stage Optimization Method for the Bearing Layout of Isolated Structure. Advances in Civil Engineering, 2021, 1–10. doi:10.1155/2021/4895176.

Fallah, N., & Zamiri, G. (2013). Multi-objective optimal design of sliding base isolation using genetic algorithm. Scientia Iranica, 20(1), 87–96. doi:10.1016/j.scient.2012.11.004.

Fallah, N., & Honarparast, S. (2013). NSGA-II based multi-objective optimization in design of Pall friction dampers. Journal of Constructional Steel Research, 89, 75–85. doi:10.1016/j.jcsr.2013.06.008.

Song, Z., Zhai, C., Ma, Y., Wang, Z., & Pei, S. (2024). Multi-stage and multi-objective design optimization for improving resilience of base-isolated hospital buildings. Engineering Structures, 304, 117644. doi:10.1016/j.engstruct.2024.117644.

Kandemir, E. C., & Mortazavi, A. (2022). Optimization of Seismic Base Isolation System Using a Fuzzy Reinforced Swarm Intelligence. Advances in Engineering Software, 174, 103323. doi:10.1016/j.advengsoft.2022.103323.

Ocak, A., Nigdeli, S. M., Bekdaş, G., Kim, S., & Geem, Z. W. (2022). Optimization of Seismic Base Isolation System Using Adaptive Harmony Search Algorithm. Sustainability (Switzerland), 14(12), 7456. doi:10.3390/su14127456.

Taymus, R. B., Aydogdu, I., Carbas, S., & Ormecioglu, T. O. (2024). Seismic design optimization of space steel frame buildings equipped with triple friction pendulum base isolators. Journal of Building Engineering, 92, 109748. doi:10.1016/j.jobe.2024.109748.

Öncü-Davas, S., Temür, R., & Alhan, C. (2022). Comparison of meta-heuristic approaches for the optimization of non-linear base-isolation systems considering the influence of superstructure flexibility. Engineering Structures, 263, 114347. doi:10.1016/j.engstruct.2022.114347.

Ocak, A., Melih Nigdeli, S., & Bekdaş, G. (2023). Optimization of the base isolator systems by considering the soil-structure interaction via metaheuristic algorithms. Structures, 56, 104886. doi:10.1016/j.istruc.2023.104886.

Blank, J., & Deb, K. (2020). Pymoo: Multi-Objective Optimization in Python. IEEE Access, 8, 89497–89509. doi:10.1109/ACCESS.2020.2990567.

Murota, N., Suzuki, S., Mori, T., Wakishima, K., Sadan, B., Tuzun, C., Sutcu, F., & Erdik, M. (2021). Performance of high-damping rubber bearings for seismic isolation of residential buildings in Turkey. Soil Dynamics and Earthquake Engineering, 143, 106620. doi:10.1016/j.soildyn.2021.106620.

Pan, P., Zamfirescu, D., Nakashima, M., Nakayasu, N., & Kashiwa, H. (2005). Base-isolation design practice in japan: Introduction to the post-kobe approach. Journal of Earthquake Engineering, 9(1), 147–171. doi:10.1080/13632460509350537.

GB50011-2010. (2010). Code for seismic design of buildings. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Beijing, China.

ASCE/SEI 7-16. (2017). Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers (ASCE), Reston, United States.

ASCE (2024). ASCE Hazard Tool. American Society of Civil Engineers (ASCE), Reston, United States. Available online: https://gis.asce.org/beta-7-22/ (accessed on July 2024).

Belbachir, A., Benanane, A., Ouazir, A., Harrat, Z. R., Hadzima-Nyarko, M., Radu, D., Işık, E., Louhibi, Z. S. M., & Amziane, S. (2023). Enhancing the Seismic Response of Residential RC Buildings with an Innovative Base Isolation Technique. Sustainability (Switzerland), 15(15), 11624. doi:10.3390/su151511624.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-07

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 ADIL EL OUARDANI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message