Performance of Asphalt Mixtures Modified with Nano-Eggshell Powder

A. Hadi Zghair Chfat, Haryati Yaacob, N. H. Mohd Kamaruddin, Z. Hazim Al-Saffar, R. Putra Jaya

Abstract


Primary issues in pavement engineering, such as rutting, moisture damage, and fatigue cracking, have prompted numerous studies aimed at improving pavement performance. Utilizing biomaterial waste to modify bitumen through nanotechnology is a promising approach to improve asphalt-mixture properties and aligns with goals of sustainability and reducing the dependence on non-renewable resources. Therefore, the primary objective of this study was to investigate the effect of nano-eggshell powder (NESP) as a sustainable bio-modifier for bitumen on the mechanical properties of asphalt mixtures. To achieve this, asphalt mixtures containing 0% (control), 5%, and 9% NESP were developed, and their mechanical properties were investigated through various tests such as moisture damage, Marshall immersion stability, resilient modulus, dynamic creep, double-punch shear, water immersion, and wheel tracking. The results showed that NESP reduced the moisture susceptibility of the mixtures by increasing their tensile strength ratio. Additionally, the durability of the asphalt mixtures improved as the NESP content was increased. Moreover, the addition of NESP significantly enhanced the resilient modulus and dynamic creep of the asphalt mixtures. The double-punch test revealed that the NESP improved the rutting and fatigue resistance of the asphalt mixtures. Furthermore, the water-immersion test indicated that NESP enhanced the adhesion properties between the bitumen and the aggregate. Finally, the wheel-track test results suggested that the mixtures modified with NESP exhibited a lower rut depth than the control mixtures. Notably, 9% NESP was optimal for enhancing the mechanical properties of the asphalt mixture. The study demonstrated that using NESP as a bio-modifier for bitumen is feasible and offers a more sustainable alternative to traditional bitumen additives.

 

Doi: 10.28991/CEJ-2024-010-11-016

Full Text: PDF


Keywords


Nano-Eggshell Powder; NESP-Modified Asphalt Mixture; Adhesion; Moisture Damage; Rutting.

References


Kharissova, A. B., Kharissova, O. V., Kharisov, B. I., & Méndez, Y. P. (2024). Carbon negative footprint materials: A review. Nano-Structures & Nano-Objects, 37, 101100. doi:10.1016/j.nanoso.2024.101100.

Pata, U. K., Kartal, M. T., & Mukhtarov, S. (2024). Technological changes and carbon neutrality targets in European countries: A sustainability approach with Fourier approximations. Technological Forecasting and Social Change, 198, 122994. doi:10.1016/j.techfore.2023.122994.

Wang, X., Ji, G., Zhang, Y., Guo, Y., & Zhao, J. (2021). Research on high-and low-temperature characteristics of bitumen blended with waste eggshell powder. Materials, 14(8). doi:10.3390/ma14082020.

Debbarma, K., Debnath, B., & Sarkar, P. P. (2022). A comprehensive review on the usage of nanomaterials in asphalt mixes. Construction and Building Materials, 361, 129634. doi:10.1016/j.conbuildmat.2022.129634.

Kamboozia, N., Saed, S. A., & Rad, S. M. (2021). Rheological behavior of asphalt binders and fatigue resistance of SMA mixtures modified with nano-silica containing RAP materials under the effect of mixture conditioning. Construction and Building Materials, 303, 124433. doi:10.1016/j.conbuildmat.2021.124433.

Das, A. K., & Singh, D. (2021). Evaluation of fatigue performance of asphalt mastics composed of nano hydrated lime filler. Construction and Building Materials, 269, 121322. doi:10.1016/j.conbuildmat.2020.121322.

Aljbouri, H. J., & Albayati, A. H. (2023). Effect of nanomaterials on the durability of hot mix asphalt. Transportation Engineering, 11, 100165. doi:10.1016/j.treng.2023.100165.

Yarahmadi, A. M., Shafabakhsh, G., & Asakereh, A. (2022). Laboratory investigation of the effect of nano Caco3 on rutting and fatigue of stone mastic asphalt mixtures. Construction and Building Materials, 317, 126127. doi:10.1016/j.conbuildmat.2021.126127.

Li, H., Liu, S., Yang, F., He, S., Jing, H., Zou, X., Li, Z., & Sheng, Y. (2024). Review of utilization of bamboo fiber in asphalt modification: Insights into preparation, performance, reinforcement, and challenges. Journal of Cleaner Production, 468, 143010. doi:10.1016/j.jclepro.2024.143010.

Al-Hadidy, A. I. (2024). Experimental Investigation on Performance of Asphalt Mixtures with Waste Materials. International Journal of Pavement Research and Technology, 17(4), 1079–1091. doi:10.1007/s42947-023-00288-w.

Aboelmagd, A., Moussa, G., Enieb, M., Khedr, S., & Abd Alla, E.-S. (2021). Evaluation of Hot Mix Asphalt and Binder Performance Modified With High Content of Nano Silica Fume. Journal of Engineering Sciences, 49(4), 1–22. doi:10.21608/jesaun.2021.70733.1046.

Broering, W. B., de Melo, J. V. S., & Manfro, A. L. (2022). Incorporation of nanoalumina into a polymeric asphalt matrix: Reinforcement of the nanostructure, improvement of phase stability, and amplification of rheological parameters. Construction and Building Materials, 320, 126261. doi:10.1016/j.conbuildmat.2021.126261.

Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54(1), 18–38. doi:10.1016/j.eurpolymj.2014.02.005.

Fang, C., Yu, R., Liu, S., & Li, Y. (2013). Nanomaterials applied in asphalt modification: A review. Journal of Materials Science & Technology, 29(7), 589–594. doi:10.1016/j.jmst.2013.04.008.

Alghrafy, Y. M., Abd Alla, E. S. M., & El-Badawy, S. M. (2021). Phase angle master curves of sulfur-extended asphalt modified with recycled polyethylene waste. Innovative Infrastructure Solutions, 6(2), 1–11. doi:10.1007/s41062-021-00459-3.

Ji, Z., Sun, L., Chen, L., Gu, W., Tian, Y., & Zhang, X. (2023). Pavement performance and modification mechanisms of asphalt binder with nano-Al2O3. International Journal of Pavement Engineering, 24(2), 2136373. doi:10.1080/10298436.2022.2136373.

Ali Shafabakhsh, G., Sadeghneja, M., & Alizadeh, S. (2023). Engineering the Effect of Nanomaterials on Bitumen and Asphalt Mixture Properties. A Review. The Baltic Journal of Road and Bridge Engineering, 18(2), 1–31. doi:10.7250/bjrbe.2023-18.596.

Alam, M. R., Safiuddin, M., Collins, C. M., Hossain, K., & Bazan, C. (2024). Innovative use of nanomaterials for improving performance of asphalt binder and asphaltic concrete: a state-of-the-art review. International Journal of Pavement Engineering, 25(1), 2370567. doi:10.1080/10298436.2024.2370567.

Bhat, F. S., Gilani, T. A., Din, I. M. U., Aziz, G., Mir, M. S., Shah, A. H., Sheikh, I. R., & Mudasir, P. (2024). Integration of nano Al2O3 and nano SiO2 in asphalt mixes: A comprehensive performance and durability evaluation. Construction and Building Materials, 412, 134687. doi:10.1016/j.conbuildmat.2023.134687.

Abdel-Wahed, T., Abdel-Raheem, A., & Moussa, G. (2022). Performance Evaluation of Asphalt Mixtures Modified with Nanomaterials. (Dept. C). Mansoura Engineering Journal, 47(1), 1–15. doi:10.21608/bfemu.2022.221670.

Hussein, A. A., Jaya, R. P., Abdul Hassan, N., Yaacob, H., Huseien, G. F., & Ibrahim, M. H. W. (2017). Performance of nanoceramic powder on the chemical and physical properties of bitumen. Construction and Building Materials, 156, 496–505. doi:10.1016/j.conbuildmat.2017.09.014.

Johnson, T. W., Hashemian, L., Patra, S., & Shabani, A. (2019, September). Application of nanoclay materials in asphalt pavements. Joint Conference and Exhibition of the Transportation Association of Canada, TAC and Intelligent Transportation Systems Canada, ITSC, 22-25 September 2019, Halifax, Canada.

Jeffry, S. N. A., Jaya, R. P., Abdul Hassan, N., Yaacob, H., & Satar, M. K. I. M. (2018). Mechanical performance of asphalt mixture containing nano-charcoal coconut shell ash. Construction and Building Materials, 173, 40–48. doi:10.1016/j.conbuildmat.2018.04.024.

Ashish, P. K., & Singh, D. (2019). Effect of Carbon Nano Tube on performance of asphalt binder under creep-recovery and sustained loading conditions. Construction and Building Materials, 215, 523–543. doi:10.1016/j.conbuildmat.2019.04.199.

Lv, S., Xia, C., Yang, Q., Guo, S., You, L., Guo, Y., & Zheng, J. (2020). Improvements on high-temperature stability, rheology, and stiffness of asphalt binder modified with waste crayfish shell powder. Journal of Cleaner Production, 264, 121745. doi:10.1016/j.jclepro.2020.121745.

Yang, X., Mills-Beale, J., & You, Z. (2017). Chemical characterization and oxidative aging of bio-asphalt and its compatibility with petroleum asphalt. Journal of Cleaner Production, 142, 1837–1847. doi:10.1016/j.jclepro.2016.11.100.

Sathvik, S., Kumar, G. S., Bahrami, A., Nitin, G. C., Singh, S. K., Althaqafi, E., & Özkılıç, Y. O. (2024). Evaluation of asphalt binder and mixture properties utilizing fish scale powder as a biomodifier. Case Studies in Construction Materials, 20, 3238. doi:10.1016/j.cscm.2024.e03238.

Huang, J., Shiva Kumar, G., Ren, J., Sun, Y., Li, Y., & Wang, C. (2022). Towards the potential usage of eggshell powder as bio-modifier for asphalt binder and mixture: workability and mechanical properties. International Journal of Pavement Engineering, 23(10), 3553–3565. doi:10.1080/10298436.2021.1905809.

Fan, G., Liu, H., Liu, C., Xue, Y., Ju, Z., Ding, S., Zhang, Y., & Li, Y. (2022). Analysis of the Influence of Waste Seashell as Modified Materials on Asphalt Pavement Performance. Materials, 15(19), 6788. doi:10.3390/ma15196788.

Guo, Y., Wang, X., Ji, G., Zhang, Y., Su, H., & Luo, Y. (2021). Effect of recycled shell waste as a modifier on the high-and low-temperature rheological properties of asphalt. Sustainability (Switzerland), 13(18), 271. doi:10.3390/su131810271.

Hu, C., Zhong, D., & Li, S. (2023). A study on effect of oyster shell powder on mechanical properties of asphalt and multiple degrees of modification mechanism. Case Studies in Construction Materials, 18, 1786. doi:10.1016/j.cscm.2022.e01786.

Ali Said Al Abri, S., Rahul Rollakanti, C., Kumar Poloju, K., & Joe, A. (2022). Experimental Study on Mechanical Properties of Concrete by partial replacement of Cement with Eggshell Powder for Sustainable Construction. Materials Today: Proceedings, 65, 1660–1665. doi:10.1016/j.matpr.2022.04.708.

Alsharari, F., Khan, K., Amin, M. N., Ahmad, W., Khan, U., Mutnbak, M., Houda, M., & Yosri, A. M. (2022). Sustainable use of waste eggshells in cementitious materials: An experimental and modeling-based study. Case Studies in Construction Materials, 17, 1620. doi:10.1016/j.cscm.2022.e01620.

Waheed, M., Yousaf, M., Shehzad, A., Inam-Ur-Raheem, M., Khan, M. K. I., Khan, M. R., Ahmad, N., Abdullah, & Aadil, R. M. (2020). Channelling eggshell waste to valuable and utilizable products: A comprehensive review. Trends in Food Science and Technology, 106, 78–90. doi:10.1016/j.tifs.2020.10.009.

Francis, A. A., & Abdel Rahman, M. K. (2016). The environmental sustainability of calcined calcium phosphates production from the milling of eggshell wastes and phosphoric acid. Journal of Cleaner Production, 137, 1432–1438. doi:10.1016/j.jclepro.2016.08.029.

Khan, K., Ahmad, W., Amin, M. N., & Deifalla, A. F. (2023). Investigating the feasibility of using waste eggshells in cement-based materials for sustainable construction. Journal of Materials Research and Technology, 23, 4059–4074. doi:10.1016/j.jmrt.2023.02.057.

Shekhawat, P., Sharma, G., & Singh, R. M. (2019). Strength behavior of alkaline activated eggshell powder and flyash geopolymer cured at ambient temperature. Construction and Building Materials, 223, 1112–1122. doi:10.1016/j.conbuildmat.2019.07.325.

Thaha, A. H., Malaka, R., Hatta, W., & Maruddin, F. (2024). Staphylococcus aureus as a foodborne pathogen in eggs and egg products in Indonesia: A review. International Journal of One Health, 10(1), 141–147. doi:10.14202/IJOH.2023.141-147.

Owuamanam, S., & Cree, D. (2020). Progress of bio-calcium carbonate waste eggshell and seashell fillers in polymer composites: A review. Journal of Composites Science, 4(2), 70. doi:10.3390/jcs4020070.

Zhang, Y., Chen, Y., Kang, Z. W., Gao, X., Zeng, X., Liu, M., & Yang, D. P. (2021). Waste eggshell membrane-assisted synthesis of magnetic CuFe2O4 nanomaterials with multifunctional properties (adsorptive, catalytic, antibacterial) for water remediation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612, 125874. doi:10.1016/j.colsurfa.2020.125874.

Amin, M., Attia, M. M., Agwa, I. S., Elsakhawy, Y., el-hassan, K. A., & Abdelsalam, B. A. (2022). Effects of sugarcane bagasse ash and nano eggshell powder on high-strength concrete properties. Case Studies in Construction Materials, 17, 1528. doi:10.1016/j.cscm.2022.e01528.

Ismael, E., Fahim, K. M., Ghorab, S. M. O., Hamouda, R. H., Rady, A. M., Zaki, M. M., & Gamal, A. M. (2024). Sustainable recycling of poultry eggshell waste for the synthesis of calcium oxide nanoparticles and evaluating its antibacterial potency against food-borne pathogens. Journal of Advanced Veterinary Research, 14(1), 130–134.

Lee, M., Tsai, W. S., & Chen, S. T. (2020). Reusing shell waste as a soil conditioner alternative? A comparative study of eggshell and oyster shell using a life cycle assessment approach. Journal of Cleaner Production, 265, 121845. doi:10.1016/j.jclepro.2020.121845.

Ferraz, E., Gamelas, J. A. F., Coroado, J., Monteiro, C., & Rocha, F. (2018). Eggshell waste to produce building lime: calcium oxide reactivity, industrial, environmental and economic implications. Materials and Structures, 51(5), 115. doi:10.1617/s11527-018-1243-7.

Liu, Q., Zeng, J., Chen, S., He, X., Su, Y., Hu, S., Yang, C., & Zheng, G. (2024). Enhancement of bitumen aging resistance by nanomicron porous eggshell loaded with waste engine oil prepared under mechanical force. Construction and Building Materials, 438, 137101. doi:10.1016/j.conbuildmat.2024.137101.

Masri, K. A., Ganesan, E., Ramadhansyah, P. J., Doh, S. I., Jasni, N. E., Al-Saffar, Z. H., & Mohammed, A. A. (2021). Volumetric Properties and Abrasion Resistance of Stone Mastic Asphalt Incorporating Eggshell Powder. IOP Conference Series: Earth and Environmental Science, 682(1). doi:10.1088/1755-1315/682/1/012058.

Zani, L., Giustozzi, F., & Harvey, J. (2017). Effect of storage stability on chemical and rheological properties of polymer-modified asphalt binders for road pavement construction. Construction and Building Materials, 145, 326–335. doi:10.1016/j.conbuildmat.2017.04.014.

Zghair Chfat, A. H., Yaacob, H., Mohd Kamaruddin, N. H., Al-Saffar, Z. H., & Putra Jaya, R. (2024). Effects of nano eggshell powder as a sustainable bio-filler on the physical, rheological, and microstructure properties of bitumen. Results in Engineering, 22, 102061. doi:10.1016/j.rineng.2024.102061.

Jabatan Kerja Raya (JKR). (2008). Standard Specification for Road Works-Section 4: Flexible Pavement, Jabatan Kerja Raya Malaysia, Kuala Lumpur, Malaysia.

ASTM D5-06. (2017). Standard Test Method for Penetration of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0005-06.

ASTM D36/D36M-12. (2014). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International, Pennsylvania, United States. doi:10.1520/D0036_D0036M-12.

ASTM D4402/D4402M-15 (2022). Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM International, Pennsylvania, United States. doi:10.1520/D4402_D4402M-15.

ASTM D7175-15. (2024). Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM International, Pennsylvania, United States. doi:10.1520/D7175-15.

ASTM C127-24. (2024). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-24.

ASTM C128-07a. (2012). Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-07A.

BS EN 1097-2. (2020). Tests for Mechanical and Physical Properties of Aggregates-Part 2: Methods for the Determination of Resistance to Fragmentation. British Standards Institution (BSI), London, United Kingdom.

BS EN 933-3. (2012). Tests for Geometrical Properties of Aggregates-Part 3: Determination of particle shape-Flakiness index. British Standards Institution (BSI), London, United Kingdom.

BS EN 933-4. (2012). Tests for Geometrical Properties of Aggregates-Part 4: Determination of Particle shape-Shape index. British Standards Institution (BSI), London, United Kingdom.

Manfro, A. L., Staub de Melo, J. V., Villena Del Carpio, J. A., & Broering, W. B. (2022). Permanent deformation performance under moisture effect of an asphalt mixture modified by calcium carbonate nanoparticles. Construction and Building Materials, 342, 128087. doi:10.1016/j.conbuildmat.2022.128087.

Nazari, H., Naderi, K., & Moghadas Nejad, F. (2018). Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles. Construction and Building Materials, 170, 591–602. doi:10.1016/j.conbuildmat.2018.03.107.

Ghasemzadeh Mahani, A., Bazoobandi, P., Hosseinian, S. M., & Ziari, H. (2021). Experimental investigation and multi-objective optimization of fracture properties of asphalt mixtures containing nano-calcium carbonate. Construction and Building Materials, 285, 122876. doi:10.1016/j.conbuildmat.2021.122876.

Razavi, S. H., & Kavussi, A. (2020). The role of nanomaterials in reducing moisture damage of asphalt mixes. Construction and Building Materials, 239, 117827. doi:10.1016/j.conbuildmat.2019.117827.

ASTM D6927-15. (2022). Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D6927-15.

Kök, B. V., & Çolak, H. (2011). Laboratory comparison of the crumb-rubber and SBS modified bitumen and hot mix asphalt. Construction and Building Materials, 25(8), 3204–3212. doi:10.1016/j.conbuildmat.2011.03.005.

Ameri, M., Mansourian, A., & Sheikhmotevali, A. H. (2013). Laboratory evaluation of ethylene vinyl acetate modified bitumens and mixtures based upon performance related parameters. Construction and Building Materials, 40, 438–447. doi:10.1016/j.conbuildmat.2012.09.109.

Rodrigues, Y. O., da Silva, D. B., de Figueirêdo Lopes Lucena, L. C., & Lopes, M. C. (2017). Performance of warm mix asphalt containing Moringa oleifera Lam seeds oil: Rheological and mechanical properties. Construction and Building Materials, 154, 137–143. doi:10.1016/j.conbuildmat.2017.07.194.

ASTM D4867/D4867M-09(2014). (2022). Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D4867_D4867M-09R14.

ASTM D1075-07. (2011). Standard Test Method for Effect of Water on Compressive Strength of Compacted Bituminous Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D1075-07.

Putri, E. E., & Sari, R. R. (2021). The study of split mastic asphalt pavement with latex addition for flooded road. IOP Conference Series: Earth and Environmental Science, 708(1). doi:10.1088/1755-1315/708/1/012046.

Kurnia, A. Y., Dewi, R., Permata, D. Y., Pataras, M., & Adelia, S. (2020). Characteristics Comparison of Refinery Asphalt, Rubberized Asphalt, and Buton Asphalt in Stone Matrix Asphalt Pavement with Marshall and Cantabro Method. Journal of Physics: Conference Series, 1500(1). doi:10.1088/1742-6596/1500/1/012125.

ASTM D7369-20. (2020). Standard Test Method for Determining the Resilient Modulus of Asphalt Mixtures by Indirect Tension Test. ASTM International, Pennsylvania, United States. doi:10.1520/D7369-20.

BS EN 12697-25. (2013). Bituminous Mixtures – Test Methods for Hot Mix Asphalt Part 25: Cyclic Compression Test. British Standards Institution (BSI), London, United Kingdom.

Kareem, M. A., Al-Jumaili, M. A., & Kareem, Y. N. A. (2023). Evaluating of Plastic Bottle Waste on Moisture Damage of Asphalt Concrete Mixture. AIP Conference Proceedings, 2775(1). doi:10.1063/5.0141586.

Hamdan, R. K., & Sarsam, S. I. (2019). Impact of Rejuvenators Type on Physical Properties of Aged Asphalt Cement. Civil Engineering Journal (Iran), 5(9), 2058–2069. doi:10.28991/cej-2019-03091393.

Khalil, S. mahmood, & Sarsam, S. I. (2020). Influence of fly ash on the volumetric and physical properties of Stone Matrix Asphalt Concrete. Journal of Engineering, 26(5), 128–142. doi:10.31026/j.eng.2020.05.09.

AASHTO T182. (2002). Standard method of test for coating and stripping of bitumen-aggregate mixtures. AASHTO Standards, Washington, United States.

Mohd Jakarni, F., Rosli, M. F., Md Yusoff, N. I., Aziz, M. M. A., Muniandy, R., & Hassim, S. (2016). An overview of moisture damage performance tests on asphalt mixtures. Jurnal Teknologi, 78(7–2), 91–98. doi:10.11113/jt.v78.9497.

AASHTO TP 63-03. (2003). Standard Method of Testing for Determining Rutting Susceptibility of Hot Mix Asphalt Using the Asphalt Pavement Analyzer. AASHTO Standards, Washington, United States.

Ai, A. H., Yi-Qiu, T., & Hameed, A. T. (2011). Starch as a modifier for asphalt paving materials. Construction and Building Materials, 25(1), 14–20. doi:10.1016/j.conbuildmat.2010.06.062.

Al-Hadidy, A. I. (2020). Performance of SBS-HMA Mixes Made with Sasobit and Zeolite. Journal of Materials in Civil Engineering, 32(10), 6020017. doi:10.1061/(asce)mt.1943-5533.0003362.

Cong, P., Chen, Z., & Ge, W. (2023). Influence of moisture on the migration of asphalt components and the adhesion between asphalt binder and aggregate. Construction and Building Materials, 385, 131513. doi:10.1016/j.conbuildmat.2023.131513.

Hamedi, G. H., Moghadas Nejad, F., & Oveisi, K. (2015). Investigating the effects of using nanomaterials on moisture damage of HMA. Road Materials and Pavement Design, 16(3), 536–552. doi:10.1080/14680629.2015.1020850.

Hamedi, G. H., & Moghadas Nejad, F. (2024). Moisture Sensitivity of Hot Mix Asphalt Modified with Micronized Calcium Carbonate. Periodica Polytechnica Civil Engineering. doi:10.3311/ppci.23201.

Sadeghnejad, M., & Shafabakhsh, G. (2017). Use of Nano SiO2 and Nano TiO2 to improve the mechanical behaviour of stone mastic asphalt mixtures. Construction and Building Materials, 157, 965–974. doi:10.1016/j.conbuildmat.2017.09.163.

Sadeghnejad, M., & Shafabakhsh, G. (2017). Estimation the Fatigue Number of Stone Mastic Asphalt Mixtures Modified with Nano SiO2 and Nano TiO2. Journal of Rehabilitation in Civil Engineering, 5(1), 17–32. doi:10.22075/jrce.2017.1835.1158.

Hao, X., Wang, Y., & Zhang, A. (2018). Research and Mechanism Analysis on Improving the Performance of Granite Asphalt Mixture. IOP Conference Series: Earth and Environmental Science, 189(3). doi:10.1088/1755-1315/189/3/032055.

Hamedi, G. H., & Moghadas Nejad, F. (2016). Use of aggregate nanocoating to decrease moisture damage of hot mix asphalt. Road Materials and Pavement Design, 17(1), 32–51. doi:10.1080/14680629.2015.1056215.

Yang, Q., Liu, Q., Zhong, J., Hong, B., Wang, D., & Oeser, M. (2019). Rheological and micro-structural characterization of bitumen modified with carbon nanomaterials. Construction and Building Materials, 201, 580–589. doi:10.1016/j.conbuildmat.2018.12.173.

Chen, Z., Zhang, H., Zhu, C., & Zhao, B. (2015). Rheological examination of aging in bitumen with inorganic nanoparticles and organic expanded vermiculite. Construction and Building Materials, 101, 884–891. doi:10.1016/j.conbuildmat.2015.10.153.

Hao, X., Wang, Y., & Zhang, A. (2014). A study on improving the adhesiveness between granite and asphalt by nano-scaled calcium carbonate. Key Engineering Materials, 575–576, 54–57. doi:10.4028/www.scientific.net/KEM.575-576.54.

Omrani, M., & Babagoli, R. (2023). Evaluation of the Effect of Nano-Calcium Carbonate Mechanical Performance of Asphalt Binder and Mixture. Journal of Transportation Research, 20(3), 467-488.

Albayati, A. H., Al-Ani, A. F., Byzyka, J., Al-Kheetan, M., & Rahman, M. (2024). Enhancing Asphalt Performance and Its Long-Term Sustainability with Nano Calcium Carbonate and Nano Hydrated Lime. Sustainability (Switzerland), 16(4), 1507. doi:10.3390/su16041507.

Walubita, L. F., Faruk, A. N. M., Fuentes, L., Prakoso, A., Dessouky, S., Naik, B., & Nyamuhokya, T. (2019). Using the Simple Punching Shear Test (SPST) for evaluating the HMA shear properties and predicting field rutting performance. Construction and Building Materials, 224, 920–929. doi:10.1016/j.conbuildmat.2019.07.133.

Faruk, A. N. M., Lee, S. I., Zhang, J., Naik, B., & Walubita, L. F. (2015). Measurement of HMA shear resistance potential in the lab: The simple punching shear test. Construction and Building Materials, 99, 62–72. doi:10.1016/j.conbuildmat.2015.09.006.

Caputo, P., Porto, M., Angelico, R., Loise, V., Calandra, P., & Oliviero Rossi, C. (2020). Bitumen and asphalt concrete modified by nanometer-sized particles: Basic concepts, the state of the art and future perspectives of the nanoscale approach. Advances in Colloid and Interface Science, 285, 102283. doi:10.1016/j.cis.2020.102283.

Hamedi, G. H., & Moghadas Nejad, F. (2015). Using energy parameters based on the surface free energy concept to evaluate the moisture susceptibility of hot mix asphalt. Road Materials and Pavement Design, 16(2), 239–255. doi:10.1080/14680629.2014.990049.

Raufi, H., Topal, A., Sengoz, B., & Kaya, D. (2019). Assessment of Asphalt Binders and Hot Mix Asphalt Modified with Nanomaterials. Periodica Polytechnica Civil Engineering. doi:10.3311/ppci.14487.

Kordi, Z., & Shafabakhsh, G. (2017). Evaluating mechanical properties of stone mastic asphalt modified with Nano Fe2O3. Construction and Building Materials, 134, 530–539. doi:10.1016/j.conbuildmat.2016.12.202.

Seitllari, A., Boz, I., Habbouche, J., & Diefenderfer, S. D. (2023). Using mechanistic–empirical based analysis to evaluate rutting performance thresholds for balanced mix design tests. Construction and Building Materials, 400, 132762. doi:10.1016/j.conbuildmat.2023.132762.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-11-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 hadi zghair

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message