Use of Recycled Ceramic Powder as a Green Alternative in Mortar-Based Cementitious Composites
Abstract
Doi: 10.28991/CEJ-2024-010-10-03
Full Text: PDF
Keywords
References
Helmy, S. H., Tahwia, A. M., Mahdy, M. G., & Elrahman, M. A. (2023). Development and characterization of sustainable concrete incorporating a high volume of industrial waste materials. Construction and Building Materials, 365, 130160. doi:10.1016/j.conbuildmat.2022.130160.
Samadi, M., Huseien, G. F., Mohammadhosseini, H., Lee, H. S., Abdul Shukor Lim, N. H., Tahir, M. M., & Alyousef, R. (2020). Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. Journal of Cleaner Production, 266, 121825. doi:10.1016/j.jclepro.2020.121825.
Özkılıç, Y. O., Althaqafi, E., Bahrami, A., Aksoylu, C., Karalar, M., Özdöner, N., Shcherban, E. M., Stel’makh, S. A., Beskopylny, A., & Thomas, B. S. (2024). Influence of ceramic waste powder on shear performance of environmentally friendly reinforced concrete beams. Scientific Reports, 14(1), 10401. doi:10.1038/s41598-024-59825-7.
Mezidi, A., Merabti, S., Benyamina, S., & Sadouki, M. (2023). Effect of Substituting White Cement with Ceramic Waste Powders (CWP) on the Performance of a Mortar Based on Crushed Sand. Advances in Materials Science, 23(4), 123–133. doi:10.2478/adms-2023-0026.
Etman, H. M., Elshikh, M. M. Y., Kaloop, M. R., Hu, J. W., & Abd ELMohsen, I. (2024). Examination of the Physical–Mechanical Properties of Sustainable Self-Curing Concrete Using Crushed Ceramic, Volcanic Powder, and Polyethylene Glycol. Sustainability (Switzerland), 16(11), 4659. doi:10.3390/su16114659.
Gautam, L., Bansal, S., Vaibhav Sharma, K., & Kalla, P. (2023). Bone-china ceramic powder and granite industrial by-product waste in self-compacting concrete: A durability assessment with statistical validation. Structures, 54, 837–856. doi:10.1016/j.istruc.2023.05.094.
Bayraktar, O. Y., Tunçtan, M., Benli, A., Türkel, İ., Kızılay, G., & Kaplan, G. (2024). A study on sustainable foam concrete with waste polyester and ceramic powder: Properties and durability. Journal of Building Engineering, 95, 110253. doi:10.1016/j.jobe.2024.110253.
Goyal, R. K., Agarwal, V., Gupta, R., Rathore, K., & Somani, P. (2021). Optimum utilization of ceramic tile waste for enhancing concrete properties. Materials Today: Proceedings, 49, 1769–1775. doi:10.1016/j.matpr.2021.08.011.
Mangi, S. A., Raza, M. S., Khahro, S. H., Qureshi, A. S., & Kumar, R. (2022). Recycling of ceramic tiles waste and marble waste in sustainable production of concrete: a review. Environmental Science and Pollution Research, 29(13), 18311–18332. doi:10.1007/s11356-021-18105-x.
Anderson, D. J., Smith, S. T., & Au, F. T. K. (2016). Mechanical properties of concrete utilising waste ceramic as coarse aggregate. Construction and Building Materials, 117, 20–28. doi:10.1016/j.conbuildmat.2016.04.153.
El-Dieb, A. S., & Kanaan, D. M. (2018). Ceramic waste powder an alternative cement replacement – Characterization and evaluation. Sustainable Materials and Technologies, 17, 63. doi:10.1016/j.susmat.2018.e00063.
Lavat, A. E., Trezza, M. A., & Poggi, M. (2009). Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Management, 29(5), 1666–1674. doi:10.1016/j.wasman.2008.10.019.
Ferrara, L., Deegan, P., Pattarini, A., Sonebi, M., & Taylor, S. (2019). Recycling ceramic waste powder: effects its grain-size distribution on fresh and hardened properties of cement pastes/mortars formulated from SCC mixes. Journal of Sustainable Cement-Based Materials, 8(3), 145–160. doi:10.1080/21650373.2018.1564396.
Oleng, M., Kanali, C., Gariy, Z., & Ronoh, E. E. (2018). Physical and Chemical Properties of Crushed Ceramic and Porcelain Clay Tile Powder. International Journal of Engineering and Applied Sciences Research, 7(7), 1–5.
AlArab, A., Hamad, B., Chehab, G., & Assaad, J. J. (2020). Use of Ceramic-Waste Powder as Value-Added Pozzolanic Material with Improved Thermal Properties. Journal of Materials in Civil Engineering, 32(9), 4020243. doi:10.1061/(asce)mt.1943-5533.0003326.
Awoyera, P. O., Akinmusuru, J. O., Ndambuki, J. M., & Lucas, S. S. (2017). Benefits of using ceramic tile waste for making sustainable concrete. Journal of Solid Waste Technology and Management, 43(3), 233–241. doi:10.5276/JSWT.2017.233.
de Matos, P. R., Sakata, R. D., Onghero, L., Uliano, V. G., de Brito, J., Campos, C. E. M., & Gleize, P. J. P. (2021). Utilization of ceramic tile demolition waste as supplementary cementitious material: An early-age investigation. Journal of Building Engineering, 38, 102187. doi:10.1016/j.jobe.2021.102187.
Aksoylu, C., Özkılıç, Y. O., Bahrami, A., Yıldızel, S. A., Hakeem, I. Y., Özdöner, N., Başaran, B., & Karalar, M. (2023). Application of waste ceramic powder as a cement replacement in reinforced concrete beams toward sustainable usage in construction. Case Studies in Construction Materials, 19, e02444. doi:10.1016/j.cscm.2023.e02444.
Taher, M. J., Abed, E. H., & Hashim, M. S. (2023). Using ceramic waste tile powder as a sustainable and eco-friendly partial cement replacement in concrete production. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.04.060.
Ebrahimi, M., Eslami, A., Hajirasouliha, I., Ramezanpour, M., & Pilakoutas, K. (2023). Effect of ceramic waste powder as a binder replacement on the properties of cement- and lime-based mortars. Construction and Building Materials, 379, 131146. doi:10.1016/j.conbuildmat.2023.131146.
Tawfik, T. A., Sičáková, A., Kuzielová, E., Kušnír, Š., Eštoková, A., Bálintová, M., & Junáková, N. (2024). Sustainable reuse of waste ceramic tiles powder and waste brick powder as a replacement for cement on green high strength concrete properties. Innovative Infrastructure Solutions, 9(5), 166. doi:10.1007/s41062-024-01498-2.
Samadi, M., Hussin, M. W., Seung Lee, H., Mohd Sam, A. R., A. Ismail, M., Abdul Shukor Lim, N. H., Ariffin, N. F., & Nur, N. H. (2015). Properties of mortar containing ceramic powder waste as cement replacement. Jurnal Teknologi, 77(12), 93–97. doi:10.11113/jt.v77.6315.
Li, L., Liu, W., You, Q., Chen, M., & Zeng, Q. (2020). Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials. Journal of Cleaner Production, 259, 120853. doi:10.1016/j.jclepro.2020.120853.
Xu, K., Huang, W., Zhang, L., Fu, S., Chen, M., Ding, S., & Han, B. (2021). Mechanical properties of low-carbon ultrahigh-performance concrete with ceramic tile waste powder. Construction and Building Materials, 287, 123036. doi:10.1016/j.conbuildmat.2021.123036.
Mohit, M., & Sharifi, Y. (2019). Thermal and microstructure properties of cement mortar containing ceramic waste powder as alternative cementitious materials. Construction and Building Materials, 223, 643–656. doi:10.1016/j.conbuildmat.2019.07.029.
Mohammadhosseini, H., Lim, N. H. A. S., Tahir, M. Md., Alyousef, R., & Samadi, M. (2019). RETRACTED ARTICLE: Performance evaluation of green mortar comprising ceramic waste as cement and fine aggregates replacement. SN Applied Sciences, 1(6). doi:10.1007/s42452-019-0566-5.
Nasr, M. S., Salih, M. A., Shubbar, A., Falah, M. W., & Abadel, A. A. (2023). Influence of mechanical activation on the behavior of green high-strength mortar including ceramic waste. Materials Science - Poland, 41(4), 41–56. doi:10.2478/msp-2023-0046.
Patel, H., Arora, N. K., & Vaniya, S. R. (2015). Use of ceramic waste powder in cement concrete. International Journal for Innovative Research in Science & Technology, 2(1), 91-97.
Central Organization for Standardization and Quality Control. (1984). Portland cement, No.5. Central Organization for Standardization and Quality Control, Baghdad, Iraq.
ASTM C618-15. (2017). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-15.
ASTM C494/C494M-19e1. (2024). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-19E01.
ASTM C1437-07. (2013). Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International, Pennsylvania, United States. doi:10.1520/C1437-07.
Pal M. S., Bharadwaj A., Pastariya S., & Mehta S. (2021). Experimental Investigation on Partial Replacement of Fine Aggregate with Ceramic Waste on M25 grade Concrete. International Research Journal of Engineering and Technology (IRJET), 8(9), 1836-1840.
Alsaif, A. (2021). Utilization of ceramic waste as partially cement substitute – A review. Construction and Building Materials, 300, 124009. doi:10.1016/j.conbuildmat.2021.124009.
Mohit, M., & Sharifi, Y. (2019). Ceramic waste powder as alternative mortar-based cementitious material. ACI Materials Journal, 116(6), 107–116. doi:10.14359/51716819.
Al-Khafaji, B. T., & Behaya, S. A. (2015). Effect of Ceramic Powder (Cp) on Compressive Strength and Drying Shrinkage Cracks of Cement Mortar. Kufa Journal of Engineering, 6(2), 63–75. doi:10.30572/2018/kje/621153.
Al-Fakih, A., Odeh, A., Mahamood, M. A. A., Al-Shugaa, M. A., Al-Osta, M. A., & Ahmad, S. (2023). Review of the Properties of Sustainable Cementitious Systems Incorporating Ceramic Waste. Buildings, 13(8), 2105. doi:10.3390/buildings13082105.
Yue, W., & Wang, B. (2024). Ceramic-added lime and cement mortars: A review of applications in building products. Science Progress, 107(3). doi:10.1177/00368504241266559.
Jamil, M., Khan, M. N. N., Karim, M. R., Kaish, A. B. M. A., & Zain, M. F. M. (2016). Physical and chemical contributions of Rice Husk Ash on the properties of mortar. Construction and Building Materials, 128, 185-198. doi:10.1016/j.conbuildmat.2016.10.029.
Nazari, A., & Riahi, S. (2012). Withdrawn: The effect of aluminium oxide nanoparticles on the compressive strength and structure of self-compacting concrete. Magazine of Concrete Research, 64(1), 71-82. doi:10.1680/macr.10.00106.
Ouyang, X., Yu, L., Wang, L., Xu, S., Ma, Y., & Fu, J. (2022). Surface properties of ceramic waste powder and its effect on the rheology, hydration and strength development of cement paste. Journal of Building Engineering, 61, 105253. doi:10.1016/j.jobe.2022.105253.
Hu, C., Han, Y., Gao, Y., Zhang, Y., & Li, Z. (2014). Property investigation of calcium–silicate–hydrate (C–S–H) gel in cementitious composites. Materials Characterization, 95, 129-139. doi:10.1016/j.matchar.2014.06.012.
Kunther, W., Ferreiro, S., & Skibsted, J. (2017). Influence of the Ca/Si ratio on the compressive strength of cementitious calcium-silicate-hydrate binders. Journal of Materials Chemistry A, 5(33), 17401–17412. doi:10.1039/c7ta06104h.
Elyasigorji, F., Farajiani, F., Hajipour Manjili, M., Lin, Q., Elyasigorji, S., Farhangi, V., & Tabatabai, H. (2023). Comprehensive Review of Direct and Indirect Pozzolanic Reactivity Testing Methods. Buildings, 13(11). doi:10.3390/buildings13112789.
DOI: 10.28991/CEJ-2024-010-10-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 luma Abdul Ghani Zghair
This work is licensed under a Creative Commons Attribution 4.0 International License.