Evaluating Partial Safety Factors for Shear Strength in Bearing Capacity Calculations for Cohesionless Soils
Doi: 10.28991/CEJ-2024-010-07-015
Full Text: PDF
Hemada, A. A., Osman, E. A. M., & Mohamed, A. M. A. (2024). Evaluating Partial Safety Factors for Shear Strength in Bearing Capacity Calculations for Cohesionless Soils. Civil Engineering Journal, 10(7), 2313–2324. https://doi.org/10.28991/CEJ-2024-010-07-015
[1] Móczár, B., & Szendefy, J. (2017). Calculation of presumed bearing capacity of shallow foundations according to the principles of eurocode 7. Periodica Polytechnica Civil Engineering, 61(3), 505–515. doi:10.3311/PPci.8553.
[2] Söderholm, P. (2020). The green economy transition: the challenges of technological change for sustainability. Sustainable Earth, 3(1), 6. doi:10.1186/s42055-020-00029-y.
[3] Abdel-Fattah, T. (2017). Employment of reliability analysis to assess soil strength partial factors for slope stability problems. International Conference on Advances in Structural and Geotechnical Engineering, ICASGE, 27-30 March, 2017, Hurghada, Egypt.
[4] EN 1997-1:2004. (2004). Eurocode 7: Part 1, General Rules. European Committee for Standardization, Brussels, Belgium.
[5] Pujadas-Gispert, E., Sanjuan-Delmás, D., & Josa, A. (2018). Environmental analysis of building shallow foundations: The influence of prefabrication, typology, and structural design codes. Journal of Cleaner Production, 186, 407–417. doi:10.1016/j.jclepro.2018.03.105.
[6] Kim, Y., Park, H., & Jeong, S. (2017). Settlement behavior of shallow foundations in unsaturated soils under rainfall. Sustainability (Switzerland), 9(8), 1417. doi:10.3390/su9081417.
[7] Johnson, K., Christensen, M., Sivakugan, N., & Karunasena, W. (2003). Simulating the response of shallow foundations using finite element modelling. Proceedings of the MODSIM 2003 International Congress on Modelling and Simulation, 14-17 July, 2003, Townsville, Australia.
[8] Enkhtur, O., Nguyen, T. D., Kim, J. M., & Kim, S. R. (2013). Evaluation of the settlement influence factors of shallow foundation by numerical analyses. KSCE Journal of Civil Engineering, 17, 85-95. doi:10.1007/s12205-013-1487-2.
[9] Terzaghi, K. (1943). Theoretical Soil Mechanics. Wiley, New York, United States. doi:10.1002/9780470172766.
[10] Michalowski, R. L. (1997). An estimate of the influence of soil weight on bearing capacity using limit analysis. Soils and Foundations, 37(4), 57–64. doi:10.3208/sandf.37.4_57.
[11] Michalowski, R. L. (2001). Upper-bound load estimates on square and rectangular footings. Geotechnique, 51(9), 787–798. doi:10.1680/geot.2001.51.9.787.
[12] Martin, C. M. (2005). Exact bearing capacity calculations using the method of characteristics. Torino International conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 19-24 June, 2005, Torino, Italy.
[13] Zafeirakos, A., & Gerolymos, N. (2016). Bearing strength surface for bridge caisson foundations in frictional soil under combined loading. Acta Geotechnica, 11(5), 1189–1208. doi:10.1007/s11440-015-0431-7.
[14] Zhou, H., Zheng, G., Yin, X., Jia, R., & Yang, X. (2018). The bearing capacity and failure mechanism of a vertically loaded strip footing placed on the top of slopes. Computers and Geotechnics, 94, 12–21. doi:10.1016/j.compgeo.2017.08.009.
[15] Sultana, P., & Dey, A. K. (2019). Estimation of Ultimate Bearing Capacity of Footings on Soft Clay from Plate Load Test Data Considering Variability. Indian Geotechnical Journal, 49(2), 170–183. doi:10.1007/s40098-018-0311-9.
[16] Papadopoulou, K., & Gazetas, G. (2020). Shape Effects on Bearing Capacity of Footings on Two-Layered Clay. Geotechnical and Geological Engineering, 38(2), 1347–1370. doi:10.1007/s10706-019-01095-6.
[17] Fu, D., Zhang, Y., & Yan, Y. (2020). Bearing capacity of a side-rounded suction caisson foundation under general loading in clay. Computers and Geotechnics, 123, 103543. doi:10.1016/j.compgeo.2020.103543.
[18] Li, S., Yu, J., Huang, M., & Leung, C. F. (2021). Upper bound analysis of rectangular surface footings on clay with linearly increasing strength. Computers and Geotechnics, 129, 103896. doi:10.1016/j.compgeo.2020.103896.
[19] Das, B. M., & Sivakugan, N. (2007). Settlements of shallow foundations on granular soil - An overview. International Journal of Geotechnical Engineering, 1(1), 19–29. doi:10.3328/IJGE.2007.01.01.19-29.
[20] Hakro, M. R., Kumar, A., Ali, M., Habib, A. F., de Azevedo, A. R. G., Fediuk, R., Sabri, M. M. S., Salmi, A., & Awad, Y. A. (2022). Numerical Analysis of Shallow Foundations with Varying Loading and Soil Conditions. Buildings, 12(5), 693. doi:10.3390/buildings12050693.
[21] Meyerhof, G. G. (1963). Some Recent Research on the Bearing Capacity of Foundations. Canadian Geotechnical Journal, 1(1), 16–26. doi:10.1139/t63-003.
[22] Hansen, J.B. (1961) A General Formula for Bearing Capacity. Bulletin No. 11, Danish Geotechnical Institute, Copenhagen, Denmark.
[23] Vesić, A. S. (1973). Analysis of Ultimate Loads of Shallow Foundations. Journal of the Soil Mechanics and Foundations Division, 99(1), 45–73. doi:10.1061/jsfeaq.0001846.
[24] Schneider-Muntau, B., & Bathaeian, I. (2018). Simulation of settlement and bearing capacity of shallow foundations with soft particle code (SPARC) and FE. GEM - International Journal on Geomathematics, 9(2), 359–375. doi:10.1007/s13137-018-0109-z.
[25] Esmaeili, K., Eslami, A., & Rezazadeh, S. (2018). Semi-Deep Skirted Foundations and Numerical Solution to Evaluate Bearing Capacity. Open Journal of Geology, 08(06), 623–640. doi:10.4236/ojg.2018.86036.
[26] Chua, B. T., Abuel-Naga, H., & Nepal, K. P. (2023). Design Charts for Geogrid-Reinforced Granular Working Platform for Heavy Tracked Plants over Clay Subgrade. Transportation Infrastructure Geotechnology, 10(5), 795–815. doi:10.1007/s40515-022-00243-5.
[27] Shahnazari, H., & Tutunchian, M. A. (2012). Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: An evolutionary approach. KSCE Journal of Civil Engineering, 16(6), 950–957. doi:10.1007/s12205-012-1651-0.
[28] ECP 202/1. (2005). Egyptian code for soil mechanics – design and construction of foundations. Part 1, Site investigation. The Housing and Building Research Center (HBRC), Cairo, Egypt.
[29] Hjiaj, M., Lyamin, A. V., & Sloan, S. W. (2005). Numerical limit analysis solutions for the bearing capacity factor Nγ. International Journal of Solids and Structures, 42(5–6), 1681–1704. doi:10.1016/j.ijsolstr.2004.08.002.
[30] Steenfelt, J. S. (1977). Scale Effect on Bearing Capacity Factor Nγ. The 9th International Conference on Soil Mechanics and Foundation Engineering ICSMFE, Tokyo, Japan.
[31] Cassidy, M. J., & Houlsby, G. T. (2002). Vertical bearing capacity factors for conical footings on sand. Geotechnique, 52(9), 687–692. doi:10.1680/geot.2002.52.9.687.
[32] Krabbenhoft, S., Damkilde, L., & Krabbenhoft, K. (2014). Bearing Capacity of Strip Footings in Cohesionless Soil Subject to Eccentric and Inclined Loads. International Journal of Geomechanics, 14(3), 4014003. doi:10.1061/(asce)gm.1943-5622.0000332.
[33] Valore, C., Ziccarelli, M., & Muscolino, S. R. (2017). The bearing capacity of footings on sand with a weak layer. Geotechnical Research, 4(1), 12–29. doi:10.1680/jgere.16.00020.
[34] Mansour, M. F., Saad El-Din, M. D., El-Mossallamy, Y. M., & Mahdi, H. A. (2018). Application of the ultimate limit states factored strength approach to design of cantilever walls in dry cohesionless soils. HBRC Journal, 14(3), 415–421. doi:10.1016/j.hbrcj.2018.02.001.
[35] Padmini, D., Ilamparuthi, K., & Sudheer, K. P. (2008). Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Computers and Geotechnics, 35(1), 33–46. doi:10.1016/j.compgeo.2007.03.001.
[36] Adarsh, S., Dhanya, R., Krishna, G., Merlin, R., & Tina, J. (2012). Prediction of Ultimate Bearing Capacity of Cohesionless Soils Using Soft Computing Techniques. ISRN Artificial Intelligence, 2012, 1–10. doi:10.5402/2012/628496.
[37] Perkins, S. W., & Madson, C. R. (2000). Bearing Capacity of Shallow Foundations on Sand: A Relative Density Approach. Journal of Geotechnical and Geoenvironmental Engineering, 126(6), 521–530. doi:10.1061/(asce)1090-0241(2000)126:6(521).
[2] Söderholm, P. (2020). The green economy transition: the challenges of technological change for sustainability. Sustainable Earth, 3(1), 6. doi:10.1186/s42055-020-00029-y.
[3] Abdel-Fattah, T. (2017). Employment of reliability analysis to assess soil strength partial factors for slope stability problems. International Conference on Advances in Structural and Geotechnical Engineering, ICASGE, 27-30 March, 2017, Hurghada, Egypt.
[4] EN 1997-1:2004. (2004). Eurocode 7: Part 1, General Rules. European Committee for Standardization, Brussels, Belgium.
[5] Pujadas-Gispert, E., Sanjuan-Delmás, D., & Josa, A. (2018). Environmental analysis of building shallow foundations: The influence of prefabrication, typology, and structural design codes. Journal of Cleaner Production, 186, 407–417. doi:10.1016/j.jclepro.2018.03.105.
[6] Kim, Y., Park, H., & Jeong, S. (2017). Settlement behavior of shallow foundations in unsaturated soils under rainfall. Sustainability (Switzerland), 9(8), 1417. doi:10.3390/su9081417.
[7] Johnson, K., Christensen, M., Sivakugan, N., & Karunasena, W. (2003). Simulating the response of shallow foundations using finite element modelling. Proceedings of the MODSIM 2003 International Congress on Modelling and Simulation, 14-17 July, 2003, Townsville, Australia.
[8] Enkhtur, O., Nguyen, T. D., Kim, J. M., & Kim, S. R. (2013). Evaluation of the settlement influence factors of shallow foundation by numerical analyses. KSCE Journal of Civil Engineering, 17, 85-95. doi:10.1007/s12205-013-1487-2.
[9] Terzaghi, K. (1943). Theoretical Soil Mechanics. Wiley, New York, United States. doi:10.1002/9780470172766.
[10] Michalowski, R. L. (1997). An estimate of the influence of soil weight on bearing capacity using limit analysis. Soils and Foundations, 37(4), 57–64. doi:10.3208/sandf.37.4_57.
[11] Michalowski, R. L. (2001). Upper-bound load estimates on square and rectangular footings. Geotechnique, 51(9), 787–798. doi:10.1680/geot.2001.51.9.787.
[12] Martin, C. M. (2005). Exact bearing capacity calculations using the method of characteristics. Torino International conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 19-24 June, 2005, Torino, Italy.
[13] Zafeirakos, A., & Gerolymos, N. (2016). Bearing strength surface for bridge caisson foundations in frictional soil under combined loading. Acta Geotechnica, 11(5), 1189–1208. doi:10.1007/s11440-015-0431-7.
[14] Zhou, H., Zheng, G., Yin, X., Jia, R., & Yang, X. (2018). The bearing capacity and failure mechanism of a vertically loaded strip footing placed on the top of slopes. Computers and Geotechnics, 94, 12–21. doi:10.1016/j.compgeo.2017.08.009.
[15] Sultana, P., & Dey, A. K. (2019). Estimation of Ultimate Bearing Capacity of Footings on Soft Clay from Plate Load Test Data Considering Variability. Indian Geotechnical Journal, 49(2), 170–183. doi:10.1007/s40098-018-0311-9.
[16] Papadopoulou, K., & Gazetas, G. (2020). Shape Effects on Bearing Capacity of Footings on Two-Layered Clay. Geotechnical and Geological Engineering, 38(2), 1347–1370. doi:10.1007/s10706-019-01095-6.
[17] Fu, D., Zhang, Y., & Yan, Y. (2020). Bearing capacity of a side-rounded suction caisson foundation under general loading in clay. Computers and Geotechnics, 123, 103543. doi:10.1016/j.compgeo.2020.103543.
[18] Li, S., Yu, J., Huang, M., & Leung, C. F. (2021). Upper bound analysis of rectangular surface footings on clay with linearly increasing strength. Computers and Geotechnics, 129, 103896. doi:10.1016/j.compgeo.2020.103896.
[19] Das, B. M., & Sivakugan, N. (2007). Settlements of shallow foundations on granular soil - An overview. International Journal of Geotechnical Engineering, 1(1), 19–29. doi:10.3328/IJGE.2007.01.01.19-29.
[20] Hakro, M. R., Kumar, A., Ali, M., Habib, A. F., de Azevedo, A. R. G., Fediuk, R., Sabri, M. M. S., Salmi, A., & Awad, Y. A. (2022). Numerical Analysis of Shallow Foundations with Varying Loading and Soil Conditions. Buildings, 12(5), 693. doi:10.3390/buildings12050693.
[21] Meyerhof, G. G. (1963). Some Recent Research on the Bearing Capacity of Foundations. Canadian Geotechnical Journal, 1(1), 16–26. doi:10.1139/t63-003.
[22] Hansen, J.B. (1961) A General Formula for Bearing Capacity. Bulletin No. 11, Danish Geotechnical Institute, Copenhagen, Denmark.
[23] Vesić, A. S. (1973). Analysis of Ultimate Loads of Shallow Foundations. Journal of the Soil Mechanics and Foundations Division, 99(1), 45–73. doi:10.1061/jsfeaq.0001846.
[24] Schneider-Muntau, B., & Bathaeian, I. (2018). Simulation of settlement and bearing capacity of shallow foundations with soft particle code (SPARC) and FE. GEM - International Journal on Geomathematics, 9(2), 359–375. doi:10.1007/s13137-018-0109-z.
[25] Esmaeili, K., Eslami, A., & Rezazadeh, S. (2018). Semi-Deep Skirted Foundations and Numerical Solution to Evaluate Bearing Capacity. Open Journal of Geology, 08(06), 623–640. doi:10.4236/ojg.2018.86036.
[26] Chua, B. T., Abuel-Naga, H., & Nepal, K. P. (2023). Design Charts for Geogrid-Reinforced Granular Working Platform for Heavy Tracked Plants over Clay Subgrade. Transportation Infrastructure Geotechnology, 10(5), 795–815. doi:10.1007/s40515-022-00243-5.
[27] Shahnazari, H., & Tutunchian, M. A. (2012). Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: An evolutionary approach. KSCE Journal of Civil Engineering, 16(6), 950–957. doi:10.1007/s12205-012-1651-0.
[28] ECP 202/1. (2005). Egyptian code for soil mechanics – design and construction of foundations. Part 1, Site investigation. The Housing and Building Research Center (HBRC), Cairo, Egypt.
[29] Hjiaj, M., Lyamin, A. V., & Sloan, S. W. (2005). Numerical limit analysis solutions for the bearing capacity factor Nγ. International Journal of Solids and Structures, 42(5–6), 1681–1704. doi:10.1016/j.ijsolstr.2004.08.002.
[30] Steenfelt, J. S. (1977). Scale Effect on Bearing Capacity Factor Nγ. The 9th International Conference on Soil Mechanics and Foundation Engineering ICSMFE, Tokyo, Japan.
[31] Cassidy, M. J., & Houlsby, G. T. (2002). Vertical bearing capacity factors for conical footings on sand. Geotechnique, 52(9), 687–692. doi:10.1680/geot.2002.52.9.687.
[32] Krabbenhoft, S., Damkilde, L., & Krabbenhoft, K. (2014). Bearing Capacity of Strip Footings in Cohesionless Soil Subject to Eccentric and Inclined Loads. International Journal of Geomechanics, 14(3), 4014003. doi:10.1061/(asce)gm.1943-5622.0000332.
[33] Valore, C., Ziccarelli, M., & Muscolino, S. R. (2017). The bearing capacity of footings on sand with a weak layer. Geotechnical Research, 4(1), 12–29. doi:10.1680/jgere.16.00020.
[34] Mansour, M. F., Saad El-Din, M. D., El-Mossallamy, Y. M., & Mahdi, H. A. (2018). Application of the ultimate limit states factored strength approach to design of cantilever walls in dry cohesionless soils. HBRC Journal, 14(3), 415–421. doi:10.1016/j.hbrcj.2018.02.001.
[35] Padmini, D., Ilamparuthi, K., & Sudheer, K. P. (2008). Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Computers and Geotechnics, 35(1), 33–46. doi:10.1016/j.compgeo.2007.03.001.
[36] Adarsh, S., Dhanya, R., Krishna, G., Merlin, R., & Tina, J. (2012). Prediction of Ultimate Bearing Capacity of Cohesionless Soils Using Soft Computing Techniques. ISRN Artificial Intelligence, 2012, 1–10. doi:10.5402/2012/628496.
[37] Perkins, S. W., & Madson, C. R. (2000). Bearing Capacity of Shallow Foundations on Sand: A Relative Density Approach. Journal of Geotechnical and Geoenvironmental Engineering, 126(6), 521–530. doi:10.1061/(asce)1090-0241(2000)126:6(521).
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
