Evaluating Partial Safety Factors for Shear Strength in Bearing Capacity Calculations for Cohesionless Soils
Abstract
Doi: 10.28991/CEJ-2024-010-07-015
Full Text: PDF
Keywords
References
Móczár, B., & Szendefy, J. (2017). Calculation of presumed bearing capacity of shallow foundations according to the principles of eurocode 7. Periodica Polytechnica Civil Engineering, 61(3), 505–515. doi:10.3311/PPci.8553.
Söderholm, P. (2020). The green economy transition: the challenges of technological change for sustainability. Sustainable Earth, 3(1), 6. doi:10.1186/s42055-020-00029-y.
Abdel-Fattah, T. (2017). Employment of reliability analysis to assess soil strength partial factors for slope stability problems. International Conference on Advances in Structural and Geotechnical Engineering, ICASGE, 27-30 March, 2017, Hurghada, Egypt.
EN 1997-1:2004. (2004). Eurocode 7: Part 1, General Rules. European Committee for Standardization, Brussels, Belgium.
Pujadas-Gispert, E., Sanjuan-Delmás, D., & Josa, A. (2018). Environmental analysis of building shallow foundations: The influence of prefabrication, typology, and structural design codes. Journal of Cleaner Production, 186, 407–417. doi:10.1016/j.jclepro.2018.03.105.
Kim, Y., Park, H., & Jeong, S. (2017). Settlement behavior of shallow foundations in unsaturated soils under rainfall. Sustainability (Switzerland), 9(8), 1417. doi:10.3390/su9081417.
Johnson, K., Christensen, M., Sivakugan, N., & Karunasena, W. (2003). Simulating the response of shallow foundations using finite element modelling. Proceedings of the MODSIM 2003 International Congress on Modelling and Simulation, 14-17 July, 2003, Townsville, Australia.
Enkhtur, O., Nguyen, T. D., Kim, J. M., & Kim, S. R. (2013). Evaluation of the settlement influence factors of shallow foundation by numerical analyses. KSCE Journal of Civil Engineering, 17, 85-95. doi:10.1007/s12205-013-1487-2.
Terzaghi, K. (1943). Theoretical Soil Mechanics. Wiley, New York, United States. doi:10.1002/9780470172766.
Michalowski, R. L. (1997). An estimate of the influence of soil weight on bearing capacity using limit analysis. Soils and Foundations, 37(4), 57–64. doi:10.3208/sandf.37.4_57.
Michalowski, R. L. (2001). Upper-bound load estimates on square and rectangular footings. Geotechnique, 51(9), 787–798. doi:10.1680/geot.2001.51.9.787.
Martin, C. M. (2005). Exact bearing capacity calculations using the method of characteristics. Torino International conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 19-24 June, 2005, Torino, Italy.
Zafeirakos, A., & Gerolymos, N. (2016). Bearing strength surface for bridge caisson foundations in frictional soil under combined loading. Acta Geotechnica, 11(5), 1189–1208. doi:10.1007/s11440-015-0431-7.
Zhou, H., Zheng, G., Yin, X., Jia, R., & Yang, X. (2018). The bearing capacity and failure mechanism of a vertically loaded strip footing placed on the top of slopes. Computers and Geotechnics, 94, 12–21. doi:10.1016/j.compgeo.2017.08.009.
Sultana, P., & Dey, A. K. (2019). Estimation of Ultimate Bearing Capacity of Footings on Soft Clay from Plate Load Test Data Considering Variability. Indian Geotechnical Journal, 49(2), 170–183. doi:10.1007/s40098-018-0311-9.
Papadopoulou, K., & Gazetas, G. (2020). Shape Effects on Bearing Capacity of Footings on Two-Layered Clay. Geotechnical and Geological Engineering, 38(2), 1347–1370. doi:10.1007/s10706-019-01095-6.
Fu, D., Zhang, Y., & Yan, Y. (2020). Bearing capacity of a side-rounded suction caisson foundation under general loading in clay. Computers and Geotechnics, 123, 103543. doi:10.1016/j.compgeo.2020.103543.
Li, S., Yu, J., Huang, M., & Leung, C. F. (2021). Upper bound analysis of rectangular surface footings on clay with linearly increasing strength. Computers and Geotechnics, 129, 103896. doi:10.1016/j.compgeo.2020.103896.
Das, B. M., & Sivakugan, N. (2007). Settlements of shallow foundations on granular soil - An overview. International Journal of Geotechnical Engineering, 1(1), 19–29. doi:10.3328/IJGE.2007.01.01.19-29.
Hakro, M. R., Kumar, A., Ali, M., Habib, A. F., de Azevedo, A. R. G., Fediuk, R., Sabri, M. M. S., Salmi, A., & Awad, Y. A. (2022). Numerical Analysis of Shallow Foundations with Varying Loading and Soil Conditions. Buildings, 12(5), 693. doi:10.3390/buildings12050693.
Meyerhof, G. G. (1963). Some Recent Research on the Bearing Capacity of Foundations. Canadian Geotechnical Journal, 1(1), 16–26. doi:10.1139/t63-003.
Hansen, J.B. (1961) A General Formula for Bearing Capacity. Bulletin No. 11, Danish Geotechnical Institute, Copenhagen, Denmark.
Vesić, A. S. (1973). Analysis of Ultimate Loads of Shallow Foundations. Journal of the Soil Mechanics and Foundations Division, 99(1), 45–73. doi:10.1061/jsfeaq.0001846.
Schneider-Muntau, B., & Bathaeian, I. (2018). Simulation of settlement and bearing capacity of shallow foundations with soft particle code (SPARC) and FE. GEM - International Journal on Geomathematics, 9(2), 359–375. doi:10.1007/s13137-018-0109-z.
Esmaeili, K., Eslami, A., & Rezazadeh, S. (2018). Semi-Deep Skirted Foundations and Numerical Solution to Evaluate Bearing Capacity. Open Journal of Geology, 08(06), 623–640. doi:10.4236/ojg.2018.86036.
Chua, B. T., Abuel-Naga, H., & Nepal, K. P. (2023). Design Charts for Geogrid-Reinforced Granular Working Platform for Heavy Tracked Plants over Clay Subgrade. Transportation Infrastructure Geotechnology, 10(5), 795–815. doi:10.1007/s40515-022-00243-5.
Shahnazari, H., & Tutunchian, M. A. (2012). Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: An evolutionary approach. KSCE Journal of Civil Engineering, 16(6), 950–957. doi:10.1007/s12205-012-1651-0.
ECP 202/1. (2005). Egyptian code for soil mechanics – design and construction of foundations. Part 1, Site investigation. The Housing and Building Research Center (HBRC), Cairo, Egypt.
Hjiaj, M., Lyamin, A. V., & Sloan, S. W. (2005). Numerical limit analysis solutions for the bearing capacity factor Nγ. International Journal of Solids and Structures, 42(5–6), 1681–1704. doi:10.1016/j.ijsolstr.2004.08.002.
Steenfelt, J. S. (1977). Scale Effect on Bearing Capacity Factor Nγ. The 9th International Conference on Soil Mechanics and Foundation Engineering ICSMFE, Tokyo, Japan.
Cassidy, M. J., & Houlsby, G. T. (2002). Vertical bearing capacity factors for conical footings on sand. Geotechnique, 52(9), 687–692. doi:10.1680/geot.2002.52.9.687.
Krabbenhoft, S., Damkilde, L., & Krabbenhoft, K. (2014). Bearing Capacity of Strip Footings in Cohesionless Soil Subject to Eccentric and Inclined Loads. International Journal of Geomechanics, 14(3), 4014003. doi:10.1061/(asce)gm.1943-5622.0000332.
Valore, C., Ziccarelli, M., & Muscolino, S. R. (2017). The bearing capacity of footings on sand with a weak layer. Geotechnical Research, 4(1), 12–29. doi:10.1680/jgere.16.00020.
Mansour, M. F., Saad El-Din, M. D., El-Mossallamy, Y. M., & Mahdi, H. A. (2018). Application of the ultimate limit states factored strength approach to design of cantilever walls in dry cohesionless soils. HBRC Journal, 14(3), 415–421. doi:10.1016/j.hbrcj.2018.02.001.
Padmini, D., Ilamparuthi, K., & Sudheer, K. P. (2008). Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Computers and Geotechnics, 35(1), 33–46. doi:10.1016/j.compgeo.2007.03.001.
Adarsh, S., Dhanya, R., Krishna, G., Merlin, R., & Tina, J. (2012). Prediction of Ultimate Bearing Capacity of Cohesionless Soils Using Soft Computing Techniques. ISRN Artificial Intelligence, 2012, 1–10. doi:10.5402/2012/628496.
Perkins, S. W., & Madson, C. R. (2000). Bearing Capacity of Shallow Foundations on Sand: A Relative Density Approach. Journal of Geotechnical and Geoenvironmental Engineering, 126(6), 521–530. doi:10.1061/(asce)1090-0241(2000)126:6(521).
DOI: 10.28991/CEJ-2024-010-07-015
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ahmed M. A. Mohamed
This work is licensed under a Creative Commons Attribution 4.0 International License.