Intelligent Forecasting of Flooding Intensity Using Machine Learning
Abstract
Doi: 10.28991/CEJ-2024-010-10-010
Full Text: PDF
Keywords
References
Mayen, J. V., Wood, E., & Frazier, T. (2022). Practical flood risk reduction strategies in South Sudan. Journal of Emergency Management, 20(8), 123–136. doi:10.5055/jem.0669.
Food Security Cluster. (2024). South Sudan Flood Preparedness and Response Plan-June to December 2024. Food Security Cluster, Rome. Available online: https://fscluster.org/sites/default/files/South%20Sudan%20Floods%20Preparedness%20and%20 Response%2022%20June%202024.pdf (accessed on September 2024).
Blöchl, G., Ardoin-Bardin, S., Bonell, M., Dorninger, M., Goodrich, D., Gutknecht, D., Matamoros, D., Merz, B., Shand, P., & Szolgay, J. (2007). At what scales do climate variability and land cover change impact on flooding and low flows? Hydrological Processes, 21(9), 1241–1247. doi:10.1002/hyp.6669.
Yaseen, Z. M., Sulaiman, S. O., Deo, R. C., & Chau, K. W. (2019). An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. Journal of Hydrology, 569, 387–408. doi:10.1016/j.jhydrol.2018.11.069.
Smith, A., Boyd, D., & Veale, B. (1999). Flood management on the Grand River, Ontario, Canada: a watershed conservation perspective. Environments, 27(1), 23.
Abou Rjeily, Y., Abbas, O., Sadek, M., Shahrour, I., & Hage Chehade, F. (2017). Flood forecasting within urban drainage systems using NARX neural network. Water Science and Technology, 76(9), 2401–2412. doi:10.2166/wst.2017.409.
Tang, Y., Sun, Y., Han, Z., Soomro, S. e. hyde., Wu, Q., Tan, B., & Hu, C. (2023). Flood Forecasting Based on Machine Learning Pattern Recognition and Dynamic Migration of Parameters. Journal of Hydrology: Regional Studies, 47, 101406. doi:10.1016/j.ejrh.2023.101406.
Nevo, S., Morin, E., Gerzi Rosenthal, A., Metzger, A., Barshai, C., Weitzner, D., Voloshin, D., Kratzert, F., Elidan, G., Dror, G., Begelman, G., Nearing, G., Shalev, G., Noga, H., Shavitt, I., Yuklea, L., Royz, M., Giladi, N., Peled Levi, N., … Matias, Y. (2022). Flood forecasting with machine learning models in an operational framework. Hydrology and Earth System Sciences, 26(15), 4013–4032. doi:10.5194/hess-26-4013-2022.
Chang, F., Hsu, K., & Chang, L. (2019). Flood Forecasting Using Machine Learning Methods. In Flood Forecasting Using Machine Learning Methods. doi:10.3390/books978-3-03897-549-6.
Kunverji, K., Shah, K., & Shah, N. (2021). A Flood Prediction System Developed Using Various Machine Learning Algorithms. SSRN Electronic Journal. doi:10.2139/ssrn.3866524.
Faruq, A., Hussein, S. F. M., Marto, A., & Abdullah, S. S. (2022). Flood River Water Level Forecasting using Ensemble Machine Learning for Early Warning Systems. IOP Conference Series: Earth and Environmental Science, 1091(1). doi:10.1088/1755-1315/1091/1/012041.
Yang, S. N., & Chang, L. C. (2020). Regional inundation forecasting using machine learning techniques with the internet of things. Water (Switzerland), 12(6). doi:10.3390/W12061578.
Nakhaei, M., Nakhaei, P., Gheibi, M., Chahkandi, B., Wacławek, S., Behzadian, K., Chen, A. S., & Campos, L. C. (2023). Enhancing community resilience in arid regions: A smart framework for flash flood risk assessment. Ecological Indicators, 153. doi:10.1016/j.ecolind.2023.110457.
Shehzadi, M., Ali, R. H., Abideen, Z. ul, Ijaz, A. Z., & Khan, T. A. (2023). Enhancing Flood Resilience: Streamflow Forecasting and Inundation Modeling in Pakistan †. Engineering Proceedings, 56(1), 1–8. doi:10.3390/ASEC2023-16612.
Mardian, J., Champagne, C., Bonsal, B., & Berg, A. (2023). A Machine Learning Framework for Predicting and Understanding the Canadian Drought Monitor. Water Resources Research, 59(8), 1–23. doi:10.1029/2022WR033847.
Filipova, V., Hammond, A., Leedal, D., & Lamb, R. (2022). Prediction of flood quantiles at ungauged catchments for the contiguous USA using Artificial Neural Networks. Hydrology Research, 53(1), 1–17. doi:10.2166/NH.2021.082.
Zhang, Y., Pan, D., Van Griensven, J., Yang, S. X., & Gharabaghi, B. (2023). Intelligent flood forecasting and warning: a survey. Intelligence and Robotics, 3(2), 190–212. doi:10.20517/ir.2023.12.
Zhang, B., Ouyang, C., Cui, P., Xu, Q., Wang, D., Zhang, F., Li, Z., Fan, L., Lovati, M., Liu, Y., & Zhang, Q. (2024). Deep learning for cross-region streamflow and flood forecasting at a global scale. Innovation, 5(3). doi:10.1016/j.xinn.2024.100617.
Kumar, V., Azamathulla, H. M., Sharma, K. V., Mehta, D. J., & Maharaj, K. T. (2023). The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management. Sustainability (Switzerland), 15(13). doi:10.3390/su151310543.
Yang, Y., & Chui, T. F. M. (2021). Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods. Hydrology and Earth System Sciences, 25(11), 5839–5858. doi:10.5194/hess-25-5839-2021.
Xu, H., Ragno, E., Tan, J., Antonini, A., Bricker, J. D., Jonkman, S. N., Liu, Q., & Wang, J. (2023). Perspectives on Compound Flooding in Chinese Estuary Regions. International Journal of Disaster Risk Science, 14(2), 269–279. doi:10.1007/s13753-023-00482-1.
Hu, R., Fang, F., Pain, C. C., & Navon, I. M. (2019). Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method. Journal of Hydrology, 575, 911–920. doi:10.1016/j.jhydrol.2019.05.087.
Moon, H., Yoon, S., & Moon, Y. (2023). Urban flood forecasting using a hybrid modeling approach based on a deep learning technique. Journal of Hydroinformatics, 25(2), 593–610. doi:10.2166/hydro.2023.203.
Deng, A. A. N., Nursetiawan, N., & Ikhsan, J. (2024). Evaluating Flood Hazard Mitigation through Sustainable Urban Drainage Systems in Bor, Jonglei State, South Sudan. Journal of Civil and Hydraulic Engineering, 2(1), 31–50. doi:10.56578/jche020103.
Orton, P. M., Conticello, F. R., Cioffi, F., Hall, T. M., Georgas, N., Lall, U., Blumberg, A. F., & MacManus, K. (2020). Flood hazard assessment from storm tides, rain and sea level rise for a tidal river estuary. Natural Hazards, 102(2), 729–757. doi:10.1007/s11069-018-3251-x.
Puspasari, R. L., Yoon, D., Kim, H., & Kim, K. W. (2023). Machine Learning for Flood Prediction in Indonesia: Providing Online Access for Disaster Management Control. Economic and Environmental Geology, 56(1), 65–73. doi:10.9719/eeg.2023.56.1.65.
Maspo, N. A., Bin Harun, A. N., Goto, M., Cheros, F., Haron, N. A., & Mohd Nawi, M. N. (2020). Evaluation of Machine Learning approach in flood prediction scenarios and its input parameters: A systematic review. IOP Conference Series: Earth and Environmental Science, 479(1). doi:10.1088/1755-1315/479/1/012038.
Nyoagbe, M., Ayer, J., & Yevugah, L. L. (2023). Flood Prediction using Machine Learning and GIS Flood Prediction Using Machine Learning and GIS as an Early Warning System (12205) Michael Nyoagbe, John Ayer, Lily Lisa Yevugah and Yaw Mensah Asare (Ghana). FIG Working Week 2023, Protecting Our World. 28 May-1 June, 2023, Orlando, United States.
Yang, Y., Yin, J., Zhang, W., Zhang, Y., Lu, Y., Liu, Y., Xiao, A., Wang, Y., & Song, W. (2021). Modeling of a compound flood induced by the levee breach at Qianbujing Creek, Shanghai, during Typhoon Fitow. Natural Hazards and Earth System Sciences, 21(11), 3563–3572. doi:10.5194/nhess-21-3563-2021.
Razali, N., Ismail, S., & Mustapha, A. (2020). Machine learning approach for flood risks prediction. IAES International Journal of Artificial Intelligence, 9(1), 73–80. doi:10.11591/ijai.v9.i1.pp73-80.
Sekulić, P., Regina, P., Spadafina, L., Dentamaro, G., Porcelli, A., Bove, C., Kovačević, S., & Kalezić, M. (2020). Real-time flood prediction using recurrent neural networks and random forest. 24th IMEKO TC4 International Symposium and 22nd International Workshop on ADC and DAC Modelling and Testing, 14-16 September, 2020, Palermo, Italy.
Ogbuene, E. B., Eze, C. A., Aloh, O. G., Oroke, A. M., Udegbunam, D. O., Ogbuka, J. C., Achoru, F. E., Ozorme, V. A., Anwara, O., Chukwunonyelum, I., Nebo, A. N., & Okolo, O. J. (2024). Application of Machine Learning for Flood Prediction and Evaluation in Southern Nigeria. Atmospheric and Climate Sciences, 14(03), 299–316. doi:10.4236/acs.2024.143019.
Asadollahi, A., Magar, B. A., Poudel, B., Sohrabifar, A., & Kalra, A. (2024). Application of Machine Learning Models for Improving Discharge Prediction in Ungauged Watershed: A Case Study in East DuPage, Illinois. Geographies, 4(2), 363–377. doi:10.3390/geographies4020021.
DOI: 10.28991/CEJ-2024-010-10-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jazaul Ikhsan, Abraham Ayuen Ngong Deng
This work is licensed under a Creative Commons Attribution 4.0 International License.