Retrofitting Bolted Flange Plate (BFP) Connections Using Haunches and Extended End-Plates
Abstract
Doi: 10.28991/CEJ-2024-010-08-03
Full Text: PDF
Keywords
References
Civjan, S. A., Engelhardt, M. D., & Gross, J. L. (2000). Retrofit of Pre-Northridge Moment-Resisting Connections. Journal of Structural Engineering, 126(4), 445–452. doi:10.1061/(asce)0733-9445(2000)126:4(445).
Bruneau, M., Uang, C.-M., & Sabelli, R. (2011). Ductile Design of Steel Structures. McGraw Hill, New York, United States.
Uang, C. M., Bondad, D., & Lee, C. H. (1998). Cyclic performance of haunch repaired steel moment connections: Experimental testing and analytical modeling. Engineering Structures, 20(4–6), 552–561. doi:10.1016/S0141-0296(97)00093-X.
Saberi, H., Kheyroddin, A., & Gerami, M. (2016). Welded haunches for seismic retrofitting of bolted T-stub connections and flexural strengthening of simple connections. Engineering Structures, 129, 31–43. doi:10.1016/j.engstruct.2016.09.050.
Saberi, H., Kheyroddin, A., & Gerami, M. (2017). Seismic strengthening of weak bolted end plate connections using welded haunches. International Journal of Steel Structures, 17(2), 743–755. doi:10.1007/s13296-017-6028-2.
Shi, G., Zhao, H., Chen, X., & Xiao, T. (2020). Experimental study of cyclic behavior of retrofitted beam-to-column joints with welded haunches. Journal of Constructional Steel Research, 171, 106146. doi:10.1016/j.jcsr.2020.106146.
Asada, H., Tanaka, T., Yamada, S., & Matoba, H. (2014). Proposal for seismic retrofit of beam-to-column connection by the addition of H-section haunches to beams using bolt connection. International Journal of Steel Structures, 14(4), 865–871. doi:10.1007/s13296-014-1217-8.
D’Aniello, M., Montuori, R., Nastri, E., Piluso, V., & Todisco, P. (2024). Parametric Finite Element Study on FREEDAM Beam to Column Joints with Different Details of the Haunch Slotted Holes. Applied Sciences (Switzerland), 14(7), 2770. doi:10.3390/app14072770.
Richards, P. W., & Lee, H. (2024). Special moment frame connections with shear-yielding haunches. Engineering Structures, 304. doi:10.1016/j.engstruct.2024.117635.
Sahil, M., Bahrami, A., Waqas, H. A., Amin, F., Mansoor Khan, M., Iqbal, F., Fawad, M., & Najam, F. A. (2024). Seismic performance evaluation of exterior reinforced concrete beam-column connections retrofitted with economical perforated steel haunches. Results in Engineering, 22, 102179. doi:10.1016/j.rineng.2024.102179.
Zhang, Y., Wang, M., & Shi, G. (2024). Mechanical behavior of the extended end-plate connections of a portal frame with various retrofitted constructions under loading. Structures, 63. doi:10.1016/j.istruc.2024.106477.
Qiao, H., Xie, X., Hu, X., Wang, W., & Hong, F. (2024). Experimental study on large deflections of beam–column joints with reinforced flange plates. Journal of Constructional Steel Research, 217. doi:10.1016/j.jcsr.2024.108634.
Sumner, E. A., & Murray, T. M. (2002). Behavior of Extended End-Plate Moment Connections Subject to Cyclic Loading. Journal of Structural Engineering, 128(4), 501–508. doi:10.1061/(asce)0733-9445(2002)128:4(501).
ANSI/AISC 358-16. (2016). Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications. American Institute of Steel Construction (AISC), Chicago, United States.
Solhmirzaei, A., Tahamouli Roudsari, M., & Hosseini Hashemi, B. (2021). A new detail for the panel zone of beam-to-wide flange column connections with endplate. Structures, 34, 1108–1123. doi:10.1016/j.istruc.2021.08.061.
Yılmaz, O., Bekiroğlu, S., Alemdar, F., Arslan, G., Sevim, B., & Ayvaz, Y. (2019). Experimental investigation of bolted stiffened end-plate and bolted flange-plate connections. Latin American Journal of Solids and Structures, 16(3), e170. doi:10.1590/1679-78255089.
Sato, A., Newell, J. D., & Uang, C.-M. (2008). Cyclic Behavior and Seismic Design of Bolted Flange Plate Steel Moment Connections. Engineering Journal, 45(4), 221–232. doi:10.62913/engj.v45i4.946.
ANSI/AISC 358-22. (2022). Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications. American Institute of Steel Construction (AISC), Chicago, United States.
ANSI/AISC 341-22. (2022). Seismic Provisions for Structural Steel Buildings. American Institute of Steel Construction (AISC), Chicago, United States.
Kang, H., & Kim, J. (2015). Progressive Collapse of Steel Moment Frames Subjected to Vehicle Impact. Journal of Performance of Constructed Facilities, 29(6), 4014172. doi:10.1061/(asce)cf.1943-5509.0000665.
Kulak, G. (2002). Design guide 17 – High Strength bolts – A Primer for Structural Engineers. American Institute of Steel Construction (AISC), Chicago, United States.
Madenci, E., & Guven, I. (2015). The finite element method and applications in engineering using ANSYS®. Springer, New York, United States.
ANSYS Inc. (2020). ANSYS Fluent Meshing User’s Guide. ANSYS Drive, Southpointe, United States.
ANSI/AISC 341-16. (2016). Seismic Provisions for Structural Steel Buildings. American Institute of Steel Construction (AISC), Chicago, United States.
FEMA-350.(2000). Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. Federal Emergency Management Agency (FEMA), Washington, United States.
Noor, U. A., Jadoon, M. A., Onyelowe, K., Shehzad, A., Ghaedi, K., Alabduljabbar, H., & Javed, M. F. (2024). Non-linear finite element analysis of SFRC beam-column joints under cyclic loading: enhancing ductility and structural integrity. Scientific Reports, 14(1), 18152. doi:10.1038/s41598-024-69270-1.
Fares, A. M., & Bakir, B. B. (2024, July). Parametric study on the flexural behavior of steel fiber reinforced concrete beams utilizing nonlinear finite element analysis. Structures, 65, 106688. doi:10.1016/j.istruc.2024.106688.
Abusafaqa, F. R., Samaaneh, M. A., & Dwaikat, M. B. M. (2022). Improving ductility behavior of sway-special exterior beam-column joint using ultra-high-performance fiber-reinforced concrete. Structures, 36, 979–996. doi:10.1016/j.istruc.2021.12.059.
Zhao, X., Wen, F., Chen, Y., Hu, J., Yang, X., Dai, L., & Cao, S. (2018). Experimental study on the static performance of steel reinforced concrete columns with high encased steel ratios. Structural Design of Tall and Special Buildings, 27(15), e1536. doi:10.1002/tal.1536.
Chen, C. C., Chen, C. C., & Hoang, T. T. (2016). Role of concrete confinement of wide-flange structural steel shape in steel reinforced concrete columns under cyclic loading. Engineering Structures, 110, 79–87. doi:10.1016/j.engstruct.2015.12.002.
Park, R. (1989). Evaluation of ductility of structures and structural assemblages from laboratory testing. Bulletin of the New Zealand Society for Earthquake Engineering, 22(3), 155–166. doi:10.5459/bnzsee.22.3.155-166.
Wang, W., Cai, H., Bai, C., Bao, H., Gao, B., Yuan, Z., & Wang, K. (2023). Seismic performance of partially encased concrete composite columns with corrugated web. Journal of Building Engineering, 77, 107481. doi:10.1016/j.jobe.2023.107481.
DOI: 10.28991/CEJ-2024-010-08-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Budi Suswanto
This work is licensed under a Creative Commons Attribution 4.0 International License.