Quantitative Monitoring of Coastal Erosion and Changes Using Remote Sensing in a Mediterranean Delta

Khaled Mahmoud Abdel Aziz

Abstract


The morphology of coastal regions is continually changing because of both natural and human factors. Monitoring and understanding these changes are essential for efficient coastal management and sustainable development. To protect and develop beaches, quantitative monitoring of coastal changes is crucial. According to this study, there is a persistent erosion issue with the shoreline of the Rosetta region in Egypt. Over the previous century, there has been noticeable erosion. This is mostly because of the Aswan High Dam, which was built in 1964 and decreased runoff and sediment flow. Five Landsat images spanning the years 1980–2023 were utilized in this study. The Nile Delta would be eroding at an alarming rate if action were not taken due to coastal erosion, which is made worse by sea level rise. Our study's primary goal is to evaluate the shoreline of the Rosetta region and identify rates of erosion and accretion as well as patterns of accumulation and erosion using a combination of statistical analysis of the coastline using DSAS software and remote sensing techniques. It also seeks to pinpoint hotspots that require security. In this study, the Shoreline Linear Regression Rate (LRR), End Point Rate (EPR), Shoreline Change Envelope (SCE), and Net Shoreline Movement (NSM) were determined by creating cross-sections perpendicular to the baseline using the Digital Shoreline Analysis System (DSAS). According to the analysis of coastal change, the periods with the highest levels of erosion were between 1980 and 1990, before the protection of the promontory took place. In addition, the results extracted from this study showed a stabilized shoreline between 2000 and 2023 at the Rosetta Promontory and noticeable erosion in the east and west of the promontory.

 

Doi: 10.28991/CEJ-2024-010-06-08

Full Text: PDF


Keywords


Shoreline Change; DSAS; Rosetta Promontory; Shoreline Extraction; Remote Sensing; ArcGIS; Shore Protection Authority; EPR; NSM; ESC; LRR.

References


Chettiyam Thodi, M. F., Gopinath, G., Surendran, U. P., Prem, P., Al-Ansari, N., & Mattar, M. A. (2023). Using RS and GIS Techniques to Assess and Monitor Coastal Changes of Coastal Islands in the Marine Environment of a Humid Tropical Region. Water (Switzerland), 15(21), 3819. doi:10.3390/w15213819.

Maiti, S., & Bhattacharya, A. K. (2009). Shoreline change analysis and its application to prediction: A remote sensing and statistics-based approach. Marine Geology, 257(1–4), 11–23. doi:10.1016/j.margeo.2008.10.006.

Guariglia, A., Buonamassa, A., Losurdo, A., Saladino, R., Trivigno, M. L., Zaccagnino, A., & Colangelo, A. (2006). A multisource approach for coastline mapping and identification of shoreline changes. Annals of Geophysics, 49(1), 295–304. doi:10.4401/ag-3155.

Aryastana, P., Ardantha, I., Eka Nugraha, A., & Windy Candrayana, K. (2017). Coastline changes analysis in Buleleng regency by using satellite data. The 1st Warmadewa University International Conference on Architecture and Civil Engineering, 20 October, 2017, Warmadewa University, Kota Denpasar, Indonesia.

Aryastana, P., Ardantha, I. M., & Candrayana, K. W. (2018). Coastline change analysis and erosion prediction using satellite images. MATEC Web of Conferences, 197, 13003. doi:10.1051/matecconf/201819713003.

Selamat, S. N., Abdul Maulud, K. N., Jaafar, O., & Ahmad, H. (2017). Extraction of shoreline changes in Selangor coastal area using GIS and remote sensing techniques. Journal of Physics: Conference Series, 852. doi:10.1088/1742-6596/852/1/012031.

Darwish, K., & Smith, S. (2023). Landsat-Based Assessment of Morphological Changes along the Sinai Mediterranean Coast between 1990 and 2020. Remote Sensing, 15(5), 1392. doi:10.3390/rs15051392.

El-Masry, E. A., Magdy, A., El-Gamal, A., Mahmoud, B., & El-Sayed, M. K. (2024). Multi-decadal coastal change detection using remote sensing: the Mediterranean coast of Egypt between El-Dabaa and Ras El-Hekma. Environmental Monitoring and Assessment, 196(2). doi:10.1007/s10661-024-12359-x.

Abd-Elhamid, H. F., Zeleňáková, M., Barańczuk, J., Gergelova, M. B., & Mahdy, M. (2023). Historical Trend Analysis and Forecasting of Shoreline Change at the Nile Delta Using RS Data and GIS with the DSAS Tool. Remote Sensing, 15(7), 1737. doi:10.3390/rs15071737.

Sanhory, A., El-Tahan, M., Moghazy, H. M., & Reda, W. (2022). Natural and manmade impact on Rosetta eastern shoreline using satellite Image processing technique. Alexandria Engineering Journal, 61(8), 6247–6260. doi:10.1016/j.aej.2021.11.053.

Balbaa, S., El-gamal, A., Mansour, A. S., & Rashed, M. (2020). Mapping and Monitoring of Rosetta Promontory Shoreline Pattern Change, Egypt. Journal of Oceanography & Marine Environmental System, 4(2), 29–42. doi:10.5829/idosi.jomes.2020.29.42.

Ghoneim, E., Mashaly, J., Gamble, D., Halls, J., & AbuBakr, M. (2015). Nile Delta exhibited a spatial reversal in the rates of shoreline retreat on the Rosetta promontory comparing pre- and post-beach protection. Geomorphology, 228(1), 1–14. doi:10.1016/j.geomorph.2014.08.021.

Ali, E., Cramer, W., Carnicer, J., Georgopoulou, E., Hilmi, N. J. M., Le Cozannet, G., & Lionello, P. (2022). Cross-Chapter Paper 4: Mediterranean Region, Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Cambridge, United Kingdom and New York, United States.

Torresan, S., Furlan, E., Critto, A., Michetti, M., & Marcomini, A. (2020). Egypt’s Coastal Vulnerability to Sea-Level Rise and Storm Surge: Present and Future Conditions. Integrated Environmental Assessment and Management, 16(5), 761–772. doi:10.1002/ieam.4280.

El-Raey, M. (2010). Impacts and implications of climate change for the coastal zones of Egypt. Coastal Zones and Climate Change, 7, 31-50.

El Sayed, W. R., Ali, M. A., Iskander, M. M., & Fanos, M. (2007). Evolution of Rosetta promontory during the last 500 years, Nile delta coast, Egypt. Eighth International Conference on the Mediterranean Coastal Environment (MEDCOAST), Alexandria, Egypt.

Intergovernmental Panel on Climate Change (IPCC). (2022). Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. The Ocean and Cryosphere in a Changing Climate, 321–446, Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland. doi:10.1017/9781009157964.012.

Glavovic, B., Dawson, R., Chow, W. T., Garschagen, M., Singh, C., & Thomas, A. (2022). Cities and settlements by the sea. Climate Change 2022 – Impacts, Adaptation and Vulnerability, 2163–2194, Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/9781009325844.019.

Elemam, D., & Eldeeb, A. (2023). Climate change in the coastal areas: consequences, adaptations, and projections for the Northern Coastal Area, Egypt. Scientific Journal for Damietta Faculty of Science, 12(2), 19–29. doi:10.21608/sjdfs.2023.170018.1061.

Masria, A., Nadaoka, K., Negm, A., & Iskander, M. (2015). Detection of shoreline and land cover changes around Rosetta Promontory, Egypt, based on remote sensing analysis. Land, 4(1), 216–230. doi:10.3390/land4010216.

Deabes, E. A. M. (2017). Applying ArcGIS to Estimate the Rates of Shoreline and Back-Shore Area Changes along the Nile Delta Coast, Egypt. International Journal of Geosciences, 8(3), 332–348. doi:10.4236/ijg.2017.83017.

Fouad, W., Masria, A., Nassar, K., & Shamaa, M. T. (2020). Evaluation of the Rosetta Coastal Zone through Integration of Remote Sensing and Statistical Analysis (DSAS). International Journal of Scientific & Engineering Research, 11(9), 2020.

Hemida, A. A., Khalifa, M., Abdelsalheen, M., & Afifi, S. (2023). A systematic review of coastal vulnerability assessment methods in the Egyptian context: the case study. HBRC Journal, 19(1), 161–181. doi:10.1080/16874048.2023.2241964.

Fanos, A. M. (1999). Problems and protection work along the Nile delta coastal zone. Fifth International Conference on Coastal and Port Engineering in Developing Countries, 19-23 April, 1999, Cape-Town, South Africa.

Frihy, O. E., & Lotfy, M. F. (1994). Mineralogy and textures of beach sands in relation to erosion and accretion along the Rosetta promontory of the Nile Delta, Egypt. Journal of Coastal Research, 10(3), 588–599.

The Arab Contractors. (2010). Marine Protection of The Western Coast of Rosetta City – Egypt. The Arab Contractors, Cairo, Egypt. Available online: https://www.arabcont.com/English/project-370 (accessed on May 2024).

Frihy, O. E., Shereet, S. M., & El Banna, M. M. (2008). Pattern of beach erosion and scour depth along the Rosetta promontory and their effect on the existing protection works, Nile Delta, Egypt. Journal of Coastal Research, 24(4), 857–866. doi:10.2112/07-0855.1.

Explore Google Earth. (2024). Available online: https://earth.google.com/web (accessed on May 2024).

USGS. (2024). EarthExplore: United States Geological Survey. Available online: https://earthexplorer.usgs.gov (accessed on May 2024).

DSAS. (2024). Digital Shoreline Analysis System. Available online: https://code.usgs.gov/cch/dsas (accessed on May 2024).

Aladwani, N. S. (2022). Shoreline change rate dynamics analysis and prediction of future positions using satellite imagery for the southern coast of Kuwait: A case study. Oceanologia, 64(3), 417–432. doi:10.1016/j.oceano.2022.02.002.

Abd Wahid, M. Z. A., Osman, M. S., & Setumin, S. (2023). Comparative Analysis on Shoreline Changes in Kelantan, Malaysia Using Digital Shoreline Analysis System (DSAS). Esteem Academic Journal, 19(September), 109–117. doi:10.24191/esteem.v19iseptember.21031.

Saad, R., Gerard, J. A., & Gerard, P. (2021). Detection of the shoreline changes using DSAS technique and remote sensing: a case study of Tyre Southern Lebanon. Journal of Oceanography and Marine Research, 9(11), 1000004.

Gopinath, G., Thodi, M. F. C., Surendran, U. P., Prem, P., Parambil, J. N., Alataway, A., Al-Othman, A. A., Dewidar, A. Z., & Mattar, M. A. (2023). Long-Term Shoreline and Islands Change Detection with Digital Shoreline Analysis Using RS Data and GIS. Water (Switzerland), 15(2). doi:10.3390/w15020244.

Song, Y., Shen, Y., Xie, R., & Li, J. (2021). A DSAS-based study of central shoreline changes in Jiangsu over 45 years. Anthropocene Coasts, 4(1), 115–138. doi:10.1139/anc-2020-0001.

Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., & Farris, A. S. (2018). Digital Shoreline Analysis System (DSAS) version 5.0 user guide. Open-File Report. doi:10.3133/ofr20181179.

Zoysa, S., Basnayake, V., Samarasinghe, J. T., Gunathilake, M. B., Kantamaneni, K., Muttil, N., Pawar, U., & Rathnayake, U. (2023). Analysis of Multi-Temporal Shoreline Changes Due to a Harbor Using Remote Sensing Data and GIS Techniques. Sustainability (Switzerland), 15(9), 7651. doi:10.3390/su15097651.

Singh, S., Singh, S. K., Prajapat, D. K., Pandey, V., Kanga, S., Kumar, P., & Meraj, G. (2023). Assessing the Impact of the 2004 Indian Ocean Tsunami on South Andaman’s Coastal Shoreline: A Geospatial Analysis of Erosion and Accretion Patterns. Journal of Marine Science and Engineering, 11(6), 11. doi:10.3390/jmse11061134.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-06-08

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Khaled Mahmoud Abdel Aziz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message