A Review of Biomineralization as Solution for Roads and Infrastructures Concrete Sustainability
Downloads
Doi: 10.28991/CEJ-2024-010-08-020
Full Text: PDF
Downloads
[2] Office of Energy Efficiency & Renewable Energy. (2024). Sustainable Transportation and Fuels. Office of Energy Efficiency & Renewable Energy, Washington, United States. Available online: https://www.energy.gov/eere/sustainable-transportation-and-fuels (accessed on July 2024).
[3] Abdellatif, S., Elhadi, K. M., Raza, A., Arshad, M., & Elhag, A. B. (2023). A scientometric evaluation of self-healing cementitious composites for sustainable built environment applications. Journal of Building Engineering, 76. doi:10.1016/j.jobe.2023.107361.
[4] Raza, A., El Ouni, M. H., Khan, Q. uz Z., Azab, M., Khan, D., Elhadi, K. M., & Alashker, Y. (2023). Sustainability assessment, structural performance and challenges of self-healing bio-mineralized concrete: A systematic review for built environment applications. Journal of Building Engineering, 66. doi:10.1016/j.jobe.2023.105839.
[5] Luhar, S., Luhar, I., & Shaikh, F. U. A. (2022). A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties. Journal of Composites Science, 6(1). doi:10.3390/jcs6010023.
[6] Khushnood, R. A., Qureshi, Z. A., Shaheen, N., & Ali, S. (2020). Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure. Science of the Total Environment, 703. doi:10.1016/j.scitotenv.2019.135007.
[7] Zhang, X., Fan, X., Li, M., Samia, A., & Yu, X. (Bill). (2021). Study on the behaviors of fungi-concrete surface interactions and theoretical assessment of its potentials for durable concrete with fungal-mediated self-healing. Journal of Cleaner Production, 292. doi:10.1016/j.jclepro.2021.125870.
[8] Bagga, M., Hamley-Bennett, C., Alex, A., Freeman, B. L., Justo-Reinoso, I., Mihai, I. C., Gebhard, S., Paine, K., Jefferson, A. D., Masoero, E., & OfiУeru, I. D. (2022). Advancements in bacteria based self-healing concrete and the promise of modelling. Construction and Building Materials, 358. doi:10.1016/j.conbuildmat.2022.129412.
[9] Lee, Y. S., & Park, W. (2018). Current challenges and future directions for bacterial self-healing concrete. Applied microbiology and biotechnology, 102, 3059-3070. doi:10.1007/s00253-018-8830-y.
[10] Meraz, M. M., Mim, N. J., Mehedi, M. T., Bhattacharya, B., Aftab, M. R., Billah, M. M., & Meraz, M. M. (2023). Self-healing concrete: Fabrication, advancement, and effectiveness for long-term integrity of concrete infrastructures. Alexandria Engineering Journal, 73, 665–694. doi:10.1016/j.aej.2023.05.008.
[11] Sarkar, M., Maiti, M., Xu, S., & Mandal, S. (2023). Bio-concrete: Unveiling self-healing properties beyond crack-sealing. Journal of Building Engineering, 74. doi:10.1016/j.jobe.2023.106888.
[12] Hong, G., Song, C., & Choi, S. (2020). Autogenous healing of early-age cracks in cementitious materials by superabsorbent polymers. Materials, 13(3). doi:10.3390/ma13030690.
[13] Shashank, B. S., Kumar.K, P., & Nagaraja, P. S. (2022). Fracture behavior study of self-healing bacterial concrete. Materials Today: Proceedings, 60, 267–274. doi:10.1016/j.matpr.2021.12.520.
[14] Rajawat, S.P.S., Singh Rajput, B., Sharma, M., & Jain, G. (2023). Exploring the potential of bacterial concrete: An analysis of self-healing capabilities and compressive strength. Materials Today: Proceedings, 1-10. doi:10.1016/j.matpr.2023.07.358.
[15] Anbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26. doi:10.1186/s40064-016-1869-2.
[16] Sohail, M. G., Disi, Z. Al, Zouari, N., Nuaimi, N. Al, Kahraman, R., Gencturk, B., Rodrigues, D. F., & Yildirim, Y. (2022). Bio self-healing concrete using MICP by an indigenous Bacillus cereus strain isolated from Qatari soil. Construction and Building Materials, 328. doi:10.1016/j.conbuildmat.2022.126943.
[17] Bottone, E. J. (2010). Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews, 23(2), 382–398. doi:10.1128/CMR.00073-09.
[18] Amran, M., Onaizi, A. M., Fediuk, R., Vatin, N. I., Rashid, R. S. M., Abdelgader, H., & Ozbakkaloglu, T. (2022). Self-Healing Concrete as a Prospective Construction Material: A Review. Materials, 15(9), 3214. doi:10.3390/ma15093214.
[19] Gifford, C. (2019). A sustainable reimagining of the construction industry. The New Economy, London, United Kingdom. Available online: https://www.theneweconomy.com/strategy/a-sustainable-reimagining-of-the-global-construction-industry (accessed on July 2024).
[20] Nodehi, M., Ozbakkaloglu, T., & Gholampour, A. (2022). A systematic review of bacteria-based self-healing concrete: Biomineralization, mechanical, and durability properties. Journal of Building Engineering, 49, 104038. doi:10.1016/j.jobe.2022.104038.
[21] Chen, H.-J., Peng, C.-F., Tang, C.-W., & Chen, Y.-T. (2019). Self-Healing Concrete by Biological Substrate. Materials, 12(24), 4099. doi:10.3390/ma12244099.
[22] Roberto Rosario, D., & Viado, M. J. (2024). Encapsulating immobilized ureolytic bacteria yields self-healing concrete apropos sustainable transportation materials: a review. E3S Web of Conferences, 488, 3019. doi:10.1051/e3sconf/202448803019.
[23] ACPA (2019). Concrete Pavement's Role in a Sustainable, Resilient Future Pavement's. American Concrete Pavement Association, United States. Available online: https://www.acpa.org/wp-content/uploads/2019/02/White-Paper-Concrete-Pavement%E2%80%99s-Role-in-a-Sustainable-Resilient-Future-Ver.-1.1.pdf (accessed on July 2024).
[24] Du, W., Qian, C., & Xie, Y. (2023). Demonstration application of microbial self-healing concrete in sidewall of underground engineering: A case study. Journal of Building Engineering, 63, 105512. doi:10.1016/j.jobe.2022.105512.
[25] Utilities One (2024). The Future of Concrete Self-Healing and Carbon-Negative. Utilities One, New Jersey, United States. Available online: https://utilitiesone.com/expertise/construction (accessed on June 2024).
[26] Utilities One (2024). Self-Healing Concrete Prolonging the Lifespan of Structures. Utilities One, New Jersey, United States. Available online: https://utilitiesone.com/self-healing-concrete-prolonging-the-lifespan-of-structures (accessed on July 2024).
[27] Utilities One (2024). Concrete Contribution to Sustainable Transportation and Mobility. Utilities One, New Jersey, United States. Available online: https://utilitiesone.com/concrete-contribution-to-sustainable-transportation-and-mobility (accessed on June 2024).
[28] Britannica. (2024). Bacillus. Available online: https://www.britannica.com/science/bacillus-bacteria#ref1300753 (accessed on June 2024).
[29] Karava, M., Bracharz, F., & Kabisch, J. (2019). Quantification and isolation of Bacillus subtilis spores using cell sorting and automated gating. PLOS ONE, 14(7), 0219892. doi:10.1371/journal.pone.0219892.
[30] Tan, I. S., & Ramamurthi, K. S. (2014). Spore formation in Bacillus subtilis. Environmental Microbiology Reports, 6(3), 212–225. doi:10.1111/1758-2229.12130.
[31] Hashem, A., Tabassum, B., & Fathi Abd_Allah, E. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. doi:10.1016/j.sjbs.2019.05.004.
[32] Mahapatra, S., Yadav, R., & Ramakrishna, W. (2022). Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. Journal of Applied Microbiology, 132(5), 3543–3562. doi:10.1111/jam.15480.
[33] Wangui, N. R., Karanja Thiong'O, J., & Wachira, J. M. (2020). Effect of Bacillus cohnii on Some Physicomechanical and Microstructural Properties of Ordinary Portland Cement. Journal of Chemistry, 7816079. doi:10.1155/2020/7816079.
[34] Sumathi, A., Murali, G., Gowdhaman, D., Amran, M., Fediuk, R., Vatin, N. I., Laxme, R. D., & Gowsika, T. S. (2020). Development of bacterium for crack healing and improving properties of concrete under wet–dry and full-wet curing. Sustainability (Switzerland), 12(24), 1–20. doi:10.3390/su122410346.
[35] Pueyo, M. T., Bloch, C., Carmona-Ribeiro, A. M., & Di Mascio, P. (2009). Lipopeptides produced by a soil bacillus megaterium strain. Microbial Ecology, 57(2), 367–378. doi:10.1007/s00248-008-9464-x.
[36] Scholle, M. D., White, C. A., Kunnimalaiyaan, M., & Vary, P. S. (2003). Sequencing and Characterization of pBM400 from Bacillus megaterium QM B1551. Applied and Environmental Microbiology, 69(11), 6888–6898. doi:10.1128/AEM.69.11.6888-6898.2003.
[37] Xu, K., Yuan, Z., Rayner, S., & Hu, X. (2015). Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. BMC Genomics, 16(1), 140. doi:10.1186/s12864-015-1359-x.
[38] Bhaduri, S., Debnath, N., Mitra, S., Liu, Y., & Kumar, A. (2016). Microbiologically induced calcite precipitation mediated by sporosarcina pasteurii. Journal of Visualized Experiments, 2016(110). doi:10.3791/53253.
[39] Jenson, I. (2014). Bacillus | Introduction. Encyclopedia of Food Microbiology, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-384730-0.00018-5.
[40] Manvith Kumar Reddy, C., Ramesh, B., Macrin, D., & Reddy, K. (2020). Influence of bacteria Bacillus subtilis and its effects on flexural strength of concrete. Materials Today: Proceedings, 33, 4206–4211. doi:10.1016/j.matpr.2020.07.225.
[41] Park, H. W., Bideshi, D. K., & Federici, B. A. (2010). Properties and applied use of the mosquitocidal bacterium, Bacillus sphaericus. Journal of Asia-Pacific Entomology, 13(3), 159–168. doi:10.1016/j.aspen.2010.03.002.
[42] Khachatourians, G. G. (2019). Insecticides, Microbial. Reference Module in Life Sciences. Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-809633-8.13066-3.
[43] Tang, S., Dong, Z., Ke, X., Luo, J., & Li, J. (2021). Advances in biomineralization-inspired materials for hard tissue repair. International Journal of Oral Science, 13(1). doi:10.1038/s41368-021-00147-z.
[44] Javeed, Y., Goh, Y., Mo, K. H., Yap, S. P., & Leo, B. F. (2024). Microbial self-healing in concrete: A comprehensive exploration of bacterial viability, implementation techniques, and mechanical properties. Journal of Materials Research and Technology, 29, 2376–2395. doi:10.1016/j.jmrt.2024.01.261.
[45] Рovljanski, O., Tomić, A., & Markov, S. (2022). Relationship between Bacterial Contribution and Self-Healing Effect of Cement-Based Materials. Microorganisms, 10(7), 1399. doi:10.3390/microorganisms10071399.
[46] Guan, B., Tian, Q., Li, J., Zheng, H., & Xue, T. (2023). Selecting bacteria for in-depth self-healing of concrete at both room and low temperature. Construction and Building Materials, 394. doi:10.1016/j.conbuildmat.2023.132175.
[47] Gojević, A., Netinger GrubeСa, I., Marković, B., Juradin, S., & Crnoja, A. (2023). Autonomous Self-Healing Methods as a Potential Technique for the Improvement of Concrete's Durability. Materials, 16(23), 7391. doi:10.3390/ma16237391.
[48] Bagga, M., Hamley-Bennett, C., Alex, A., Freeman, B. L., Justo-Reinoso, I., Mihai, I. C., Gebhard, S., Paine, K., Jefferson, A. D., Masoero, E., & OfiУeru, I. D. (2022). Advancements in bacteria based self-healing concrete and the promise of modelling. Construction and Building Materials, 358. doi:10.1016/j.conbuildmat.2022.129412.
[49] Inspirit. (2023). Bacteria – Nutrition and Habitat Study Guide. Inspirit, California, United States. Available online: https://www.inspiritvr.com/bacteria-nutrition-and-habitat-study-guide/ (accessed on July 2024).
[50] Global Garden. (2023). How Do Bacteria Get Nutrition?. Global Garden, Torrance, United States. Available online: https://www.globalgarden.co/knowledge/how-do-bacteria-get-nutrition/ (accessed on July 2024).
[51] BYJU'S Online. (2024). Nutritional Classification of Bacteria. BYJU'S Online, Bengaluru, India. Available online: https://byjus.com/biology/nutritional-classification-of-bacteria/ (accessed on July 2024).
[52] Bonnet, M., Lagier, J. C., Raoult, D., & Khelaifia, S. (2020). Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes and New Infections, 34. doi:10.1016/j.nmni.2019.100622.
[53] Shen, L., Yu, W., Li, L., Zhang, T., Abshir, I. Y., Luo, P., & Liu, Z. (2021). Microorganism, carriers, and immobilization methods of the microbial self-healing cement-based composites: A review. Materials, 14(17), 116. doi:10.3390/ma14175116.
[54] Wang, X., Xu, J., Wang, Z., & Yao, W. (2022). Use of recycled concrete aggregates as carriers for self-healing of concrete cracks by bacteria with high urease activity. Construction and Building Materials, 337, 127581. doi:10.1016/j.conbuildmat.2022.127581.
[55] Li, Q., Zhang, B., Ge, Q., & Yang, X. (2018). Calcium carbonate precipitation induced by calcifying bacteria in culture experiments: Influence of the medium on morphology and mineralogy. International biodeterioration & biodegradation, 134, 83-92. doi:10.1016/j.ibiod.2018.08.006.
[56] Castro-Alonso, M. J., Montañez-Hernandez, L. E., Sanchez-Muñoz, M. A., Macias Franco, M. R., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts. Frontiers in Materials, 6, 458036. doi:10.3389/fmats.2019.00126.
[57] Bahrom, H., Goncharenko, A. A., Fatkhutdinova, L. I., Peltek, O. O., Muslimov, A. R., Koval, O. Y., Eliseev, I. E., Manchev, A., Gorin, D., Shishkin, I. I., Noskov, R. E., Timin, A. S., Ginzburg, P., & Zyuzin, M. V. (2019). Controllable Synthesis of Calcium Carbonate with Different Geometry: Comprehensive Analysis of Particle Formation, Cellular Uptake, and Biocompatibility. ACS Sustainable Chemistry and Engineering, 7(23), 19142–19156. doi:10.1021/acssuschemeng.9b05128.
[58] McNamara, D. D., Lister, A., & Prior, D. J. (2016). Calcite sealing in a fractured geothermal reservoir: Insights from combined EBSD and chemistry mapping. Journal of Volcanology and Geothermal Research, 323, 38–52. doi:10.1016/j.jvolgeores.2016.04.042.
[59] Surface tests to determine transport properties of concrete – II: analytical models to calculate permeability. (2021). Transport Properties of Concrete, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-820249-4.00004-3.
[60] fxSolver (2024). Sorptivity - calculator – fxSolver. Available online: https://www.fxsolver.com/ (accessed on July 2024).
[61] Khan, M. A. Z. (2023). What is water Absorption Test of concrete? explain in details with test procedure and examples. The Engineer's Blog, 22. Available online: https://engineersblog.net/what-is-water-absorption-test-of-concrete/ (accessed on May 2024).
[62] ASTM C1585-13. (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International, Pennsylvania, United States. doi:10.1520/C1585-13
[63] SciMed. (2024). A Brief Introduction to SEM (Scanning Electron Microscopy) | SciMed, Stockport, United Kingdom. Available online: https://www.scimed.co.uk/education/sem-applications/#:~:text=Scanning electron microscopy (SEM) is, biology to electronics and forensics (accessed on May 2024).
[64] Swapp, S. (2007). Scanning Electron Microscopy (SEM). Geochemical Instrumentation and Analysis, Integrating Research and Education. Available online: https://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html (accessed on May 2024).
[65] Dutrow, B., & Clark, C. M. (2007). X-ray Powder Diffraction (XRD). Geochemical Instrumentation and Analysis, Integrating Research and Education. Available online: https://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html (accessed on May 2024).
[66] Malvern Panalytical (2024). X-ray Diffraction (XRD) – Overview. Malvern Panalytical, Massachusetts, United States. Available online: https://www.malvernpanalytical.com/en/products/technology/xray-analysis/x-ray-diffraction (accessed on June 2024).
[67] Bandlamudi, R. K., Kar, A., & Ray Dutta, J. (2023). A review of durability improvement in concrete due to bacterial inclusions. Frontiers in Built Environment, 9, 1095949. doi:10.3389/fbuil.2023.1095949.
[68] De Belie, N., & Wang, J. (2016). Bacteria-based repair and self-healing of concrete. Journal of Sustainable Cement-Based Materials, 5(1-2), 35-56. doi:10.1080/21650373.2015.1077754.
[69] Althoey, F., Zaid, O., Arbili, M. M., Martínez-García, R., Alhamami, A., Shah, H. A., & Yosri, A. M. (2023). Physical, strength, durability and microstructural analysis of self-healing concrete: A systematic review. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2022.e01730.
[70] Cappellesso, V., di Summa, D., Pourhaji, P., Prabhu Kannikachalam, N., Dabral, K., Ferrara, L., Cruz Alonso, M., Camacho, E., Gruyaert, E., & De Belie, N. (2023). A review of the efficiency of self-healing concrete technologies for durable and sustainable concrete under realistic conditions. International Materials Reviews, 68(5), 556–603. doi:10.1080/09506608.2022.2145747.
[71] IvaŠ¡kÄ—, A., Gribniak, V., Jakubovskis, R., & UrbonaviÄius, J. (2023). Bacterial Viability in Self-Healing Concrete: A Case Study of Non-Ureolytic Bacillus Species. Microorganisms, 11(10), 2402. doi:10.3390/microorganisms11102402.
[72] Osta, M. O., & Mukhtar, F. (2024). Effect of bacteria on uncracked concrete mechanical properties correlated with damage self-healing efficiency – A critical review. Developments in the Built Environment, 17, 100301. doi:10.1016/j.dibe.2023.100301.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.