The Effect of Oil Contaminated on Collapse Pattern in Gypseous Soil Using Particle Image Velocimetry and Simulation
Abstract
Doi: 10.28991/CEJ-2024-010-07-016
Full Text: PDF
Keywords
References
Al-Qhralosy, Z. K. J. (2003). Effect of Cyclic Soaking and Drying on Compressibility Characteristics of Gypseous Soils Stabilized with Emulsified Asphalt. Master Thesis, Al – Mustansiria University, Baghdad, Iraq.
Abood, A. S., Fattah, M. Y., & Al-Adili, A. (2023). Effect of saturation on dynamic characteristics of collapsible gypseous soil using cyclic triaxial testing. Case Studies in Construction Materials, 19, 2502. doi:10.1016/j.cscm.2023.e02502.
Jha, A. K., & Sivapullaiah, P. V. (2017). Unpredictable Behaviour of Gypseous/Gypsiferous Soil: An Overview. Indian Geotechnical Journal, 47(4), 503–520. doi:10.1007/s40098-017-0239-5.
Raee, E., Hataf, N., Barkhordari, K., & Ghahramani, A. (2019). The Effect of Rigidity of Reinforced Stone Columns on Bearing Capacity of Strip Footings on the Stabilized Slopes. International Journal of Civil Engineering, 17(6), 673–685. doi:10.1007/s40999-018-0291-2.
Mohsen, A., & Albusoda, B. S. (2022). The Collapsible Soil, Types, Mechanism, and identification: A Review Study. Journal of Engineering, 28(5), 41–60. doi:10.31026/j.eng.2022.05.04.
Kamil, K. S., Abdulkareem, A. H., & Mahmood, N. S. (2023). Using a Laboratory Model Test to Evaluate Collapsibility of Gypseous Soils Improved by Sludge. E3S Web of Conferences, 427, 1004. doi:10.1051/e3sconf/202342701004.
Abd-Alhameed, H. J., & Al-Busoda, B. S. (2023). Experimental Study on the Behavior of Square-Skirted Foundation Rested on Gypseous soil Under Inclined Load. Journal of Engineering, 29(3), 27–39. doi:10.31026/j.eng.2023.03.03.
Das, B. M. (2019). Advanced soil mechanics. CRC Press, London, United Kingdom. doi:10.1201/9781351215183
Al-Zory, E. A. (1993). The effect of leaching on lime stabilized gypseous soil. Master Thesis, University of Mousl, Mosul, Iraq.
Aziz, H. Y., & Ma, J. (2011). Gypseous soil improvement using fuel oil. World Academy of Science, Engineering and Technology, 51, 299-303.
García Lino, M. C., Pfanzelt, S., Domic, A. I., Hensen, I., Schittek, K., Meneses, R. I., & Bader, M. Y. (2024). Carbon dynamics in high‐A Ndean tropical cushion peatlands: A review of geographic patterns and potential drivers. Ecological Monographs, e1614. doi:10.1002/ecm.1614.
Aljuari, K. A., Fattah, M. Y., & Alzaidy, M. N. J. (2023). Behavior of circular skirted footing on gypseous soil subjected to water infiltration. Journal of the Mechanical Behavior of Materials, 32(1), 20220252. doi:10.1515/jmbm-2022-0252.
Ramadhan, R. N., Jassam, M. G., & Jassim, F. H. (2023). Collapsibility and Bearing Capacity of Gypseous Soils Treated with Natural and Industrial Fibers. Solid State Technology, 66(1), 90-110.
Aziz, L. J., & Abdulsatter, S. (2021). the Bearing Capacity of a Circular Footing on Gypseous Soil Before and After Improvement. Kufa Journal of Engineering, 6(1), 57–78. doi:10.30572/2018/kje/611308.
Schröder, A., & Schanz, D. (2023). 3D Lagrangian Particle Tracking in Fluid Mechanics. Annual Review of Fluid Mechanics, 55, 511–540. doi:10.1146/annurev-fluid-031822-041721.
Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23(1), 261–304. doi:10.1146/annurev.fl.23.010191.001401.
Lavasan, A.A., & Ghazavi, M. (2016). Failure mechanism and soil deformation pattern of soil beneath interfering square footings. Numerical Methods in Civil Engineering, 1(2), 48–56. doi:10.29252/nmce.1.2.48.
Jahanger, Z. K., Al-Barazanchi, A. J. N., & Ahmed, A. A. (2021). Field Soil Electrical Resistivity Measurements of Some Soil of Iraq. Advanced Geotechnical and Structural Engineering in the Design and Performance of Sustainable Civil Infrastructures. GeoChina 2021, Sustainable Civil Infrastructures. Springer, Cham, Switzerland. doi:10.1007/978-3-030-80155-7_8.
Liu, J., & Iskander, M. (2004). Adaptive Cross Correlation for Imaging Displacements in Soils. Journal of Computing in Civil Engineering, 18(1), 46–57. doi:10.1061/(asce)0887-3801(2004)18:1(46).
Dijkstra, J., Gaudin, C., & White, D. J. (2013). Comparison of failure modes below footings on carbonate and silica sands. International Journal of Physical Modelling in Geotechnics, 13(1), 1–12. doi:10.1680/ijpmg.12.00004.
Jahanger, Z. K., Antony, S. J., Martin, E., & Richter, L. (2018). Interaction of a rigid beam resting on a strong granular layer overlying weak granular soil: Multi-methodological investigations. Journal of Terramechanics, 79(2018b), 23–32. doi:10.1016/j.jterra.2018.05.002.
Al-Obaidi, Q., Mohsen, M., & Asker, A. (2022). Investigation of the Bearing Capacity and Collapsibility of Gypseous Soil Using Geotextile Reinforcement. Engineering and Technology Journal, 40(5), 1–10. doi:10.30684/etj.2021.131076.1002.
Head, K. H. (1980). Manual of soil laboratory testing. Pentech press, London, United Kingdom.
Al-Mufty, A. A., & Nashat, I. H. (2000). Gypsum content determination in gypseous soils and rocks. 3rd International Jordanian Conference on Mining, 25-28 April, Amman, Jordan.
S. Zbar, B., A. Khan, M., & S. Jawad, A. (2013). Geotechnical Properties of Compacted Silty Clay Mixed with Different Sludge Contents. Engineering and Technology Journal, 31(20), 263–279. doi:10.30684/etj.2013.83799.
Shalaby, S. I. (2017). Potential Collapse for Sandy Compacted Soil during Inundation. International Journal of Innovative Science, Engineering & Technology, 4(5), 307–314.
ASTM D3080/D3080M-11. (2020). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International, Pennsylvania, United States. doi:10.1520/D3080_D3080M-11.
Babalola, Z. (2016). Direct Shear and Direct Simple Shear Tests: A Comparitive Study of the Strength Parameters and their Dependence on Moisture and Fines Contents, 1–114.
Jennings, J. E., & Knight, K. (1975). A guide to construction on or with materials exhibiting additional settlement due to collapse of grain structure. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 12(9), 131. doi:10.1016/0148-9062(75)91203-6.
Antony, S. J., & Jahanger, Z. K. (2020). Local Scale Displacement Fields in Grains–Structure Interactions Under Cyclic Loading: Experiments and Simulations. Geotechnical and Geological Engineering, 38(2), 1277–1294. doi:10.1007/s10706-019-01088-5.
Galavi, V., Petalas, A., & Brinkgreve, R. B. J. (2013). Finite element modelling of seismic liquefaction in soils. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 44(3), 55-64.
Jahanger, Z. K., Sujatha, J., & Antony, S. J. (2018). Local and Global Granular Mechanical Characteristics of Grain–Structure Interactions. Indian Geotechnical Journal, 48(4), 753–767. doi:10.1007/s40098-018-0295-5.
Cui, M., Chen, F., & Bu, F. (2021). Multiphase theory of granular media and particle simulation method for projectile penetration in sand beds. International Journal of Impact Engineering, 157, 103962. doi:10.1016/j.ijimpeng.2021.103962.
Ekbote, A. G., & Nainegali, L. (2019). Interference of Two Closely Spaced Strip Footings Embedded in Cohesionless Fibre-Reinforced Foundation Soil Bed. Geo-Congress 2019, 454-464. doi:10.1061/9780784482094.041.
Zhang, Y., Hu, Z., & Xue, Z. (2018). A new method of assessing the collapse sensitivity of loess. Bulletin of Engineering Geology and the Environment, 77(4), 1287–1298. doi:10.1007/s10064-018-1372-9.
Vesić, A. S. (1973). Analysis of Ultimate Loads of Shallow Foundations. Journal of the Soil Mechanics and Foundations Division, 99(1), 45–73. doi:10.1061/jsfeaq.0001846.
Brinkgreve, R. B. J., & Vermeer, P. A. (1998). Finite element code for soil and rock analyses. AA Balkema, Rotterdam, Netherlands.
Fattahi, H., Ghaedi, H., Malekmahmoodi, F., & Armaghani, D. J. (2024, June). Accurate estimation of bearing capacity of stone columns reinforced: An investigation of different optimization algorithms. Structures 64, 106519. doi:10.1016/j.istruc.2024.106519.
Boufarh, R., Saadi, D., & Laouar, M. S. (2020). Numerical Investigations on Seismic Bearing Capacity of Interfering Strip Footings. Soils and Rocks, 43(2), 247–259. doi:10.28927/SR.432247.
Kahyaoğlu, M. R., İmançlı, G., Özden, G., & Kayalar, A. (2017). Numerical simulations of landslide-stabilizing piles: a remediation project in Söke, Turkey. Environmental Earth Sciences, 76(19), 1–14. doi:10.1007/s12665-017-6989-7.
Budhu, M. (2010). Soil mechanics and foundations. John Wiley and Sons, Hoboken, United States.
Terzaghi, K. (1943). Liner-Plate Tunnels on the Chicago (Il) Subway. Transactions of the American Society of Civil Engineers, 108(1), 970–1007. doi:10.1061/taceat.0005664.
Yin, J.-H., Wang, Y.-J., & Selvadurai, A. P. S. (2001). Influence of Nonassociativity on the Bearing Capacity of a Strip Footing. Journal of Geotechnical and Geoenvironmental Engineering, 127(11), 985–989. doi:10.1061/(asce)1090-0241(2001)127:11(985).
Murthy, T. G., Gnanamanickam, E., & Chandrasekar, S. (2012). Deformation field in indentation of a granular ensemble. Physical Review E, 85(6). doi:10.1103/physreve.85.061306.
Braim, K. S., Ahmad, S. N. A. S., Rashid, A. S. A., & Mohamad, H. (2016). Strip footing settlement on sandy soil due to eccentricty load. International Journal of GEOMATE, 11(5), 2741–2746. doi:10.21660/2016.27.1344.
Prandtl, L. (1920). On the Hardness of Plastic Bodies. Nachr. Gottinger Nachrichten, 74–85. (In German).
Al-Saoudi, N. K., Al-Khafaji, A. N., & Al-Mosawi, M. J. (2013). Challenging problems of gypseous soils in Iraq. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, 2-6 September, 2013, Paris, France.
Husain, M. M. A., Akhtarpour, A., & Mahmood, M. S. (2018). Wetting Challenges on the Gypsiferous Soils. Proceedings of the 4th International Conference on Civil Engineering, Architecture and Urban Planning, 25-27 July, 2015, Beijing, China.
Abdalhusein, M. M., Akhtarpour, A., & Mahmood, M. S. (2019). Effect of Wetting Process with Presence of Matric Suction on Unsaturated Gypseous Sand Soils. Journal of Southwest Jiaotong University, 54(5), 1-11. doi:10.35741/issn.0258-2724.54.5.3.
Ahmed, K. I. (2013). Effect of gypsum on the hydro-mechanical characteristics of partially saturated sandy soil. Ph.D. Thesis, Cardiff University, Cardiff, United Kingdom.
Fernandes, N. L., Barreto, N. M. B., Machado, A. C., & Rocha, G. P. (2015). Comparative Study between Methodologies Used for Determination of the Total Hardness in Aqueous Matrices. Periódico Tchê Química, 12(24), 91–95.
Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil Mechanics in Engineering Practice. John Wiley & Sons, Hoboken, United States.
Mukhlef, O. J., Karkush, M. O., & Zhussupbekov, A. (2020). Strength and Compressibility of Screw Piles Constructed in Gypseous Soil. IOP Conference Series: Materials Science and Engineering, 901(1), 12006. doi:10.1088/1757-899X/901/1/012006.
DOI: 10.28991/CEJ-2024-010-07-016
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Zuhair Kadhim Jahanger
This work is licensed under a Creative Commons Attribution 4.0 International License.