An In-Depth Review on the Eccentric Compression Performance of Engineered Bamboo Columns

Franklyn F. Manggapis, Orlean G. Dela Cruz

Abstract


This review paper delves into the eccentric compression performance of engineered bamboo columns, focusing on objectives like evaluating methodologies, influential parameters, and testing techniques for eccentric compression behavior. It employs a systematic literature review adhering to PRISMA 2020 guidelines to synthesize data from various studies on material properties, design parameters, and construction methods. The findings reveal challenges in predicting failure modes under eccentric compression and the need for a unified model to assess the impact of eccentricity and slenderness ratios on performance. It introduces novel insights into the standardization and testing of engineered bamboo for structural applications. It addresses a significant gap in current research by offering a comprehensive predictive framework for eccentrically loaded, engineered bamboo columns.

 

Doi: 10.28991/CEJ-2024-010-03-020

Full Text: PDF


Keywords


Bamboo; Columns; Slenderness Ratio; Eccentric Compression; Review.

References


Manggapis, F. F., Kumar. S. D. A., Lucena J. P. R. G., Carabbacan, A. P. I., & Dela Cruz, O. G. D. (2023). Advancements in Concrete Incorporation: Harnessing the Potential of Crumb Rubber Tires as Sustainable Alternatives to Fine Aggregates. Environmental Science and Engineering, 195-205. doi:10.1007/978-3-031-42588-2_16.

Carabbacan, A. P. I., & Amatosa, T. A. (2023). Effects of Polypropylene Fibers from Single-Use Facemasks on the Microstructure of Normal Cementitious Composites. Environmental Science and Engineering, 183–193. doi:10.1007/978-3-031-42588-2_15.

Zhang, X., Yin, H., Zhao, E., Li, S., & Liu, Q. (2023). Experimental investigation on embedment strength of bamboo-based composite prepared with the inorganic adhesive. Journal of Building Engineering, 76, 107323. doi:10.1016/j.jobe.2023.107323.

Kumar, R., Ganguly, A., & Purohit, R. (2023). Properties and applications of bamboo and bamboo fibre composites. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.08.162.

Sánchez Vivas, L., Costello, K., Mobley, S., Mihelcic, J. R., & Mullins, G. (2022). Determination of safety factors for structural bamboo design applications. Architectural Engineering and Design Management, 18(1), 26–37. doi:10.1080/17452007.2020.1781589.

Wang, X., & Song, B. (2022). Application of bionic design inspired by bamboo structures in collapse resistance of thin-walled cylindrical shell steel tower. Thin-Walled Structures, 171, 108666. doi:10.1016/j.tws.2021.108666.

Mimendi, L., Lorenzo, R., & Li, H. (2022). An innovative digital workflow to design, build and manage bamboo structures. Sustainable Structures, 2(1), 11. doi:10.54113/j.sust.2022.000011.

Chung, K. F., & Yu, W. K. (2002). Mechanical properties of structural bamboo for bamboo scaffoldings. Engineering Structures, 24(4), 429–442. doi:10.1016/S0141-0296(01)00110-9.

Wei, X., Zhou, H., Chen, F., & Wang, G. (2019). Bending flexibility of Moso Bamboo (Phyllostachys Edulis) with functionally graded structure. Materials, 12(12), 7. doi:10.3390/ma12122007.

Moran, R., & García, J. J. (2019). Bamboo joints with steel clamps capable of transmitting moment. Construction and Building Materials, 216, 249–260. doi:10.1016/j.conbuildmat.2019.05.025.

Adier, M. F. V., Sevilla, M. E. P., Valerio, D. N. R., & Ongpeng, J. M. C. (2023). Bamboo as Sustainable Building Materials: A Systematic Review of Properties, Treatment Methods, and Standards. Buildings, 13(10), 2449. doi:10.3390/buildings13102449.

Cayanan, F., Gabriel, J. R. D., Pantalunan, C. H., Dela Cruz, O. G. D., & Roque, I. R. (2024). A Review on Processing Techniques and Building Methods of Engineered Bamboo. Lecture Notes in Civil Engineering, 374, 137–149. doi:10.1007/978-981-99-4229-9_13.

Amada, S., & Untao, S. (2001). Fracture properties of bamboo. Composites Part B: Engineering, 32(5), 451–459. doi:10.1016/S1359-8368(01)00022-1.

Zhou, A., Huang, D., Li, H., & Su, Y. (2012). Hybrid approach to determine the mechanical parameters of fibers and matrixes of bamboo. Construction and Building Materials, 35, 191–196. doi:10.1016/j.conbuildmat.2012.03.011.

Lorenzo, R., Mimendi, L., Godina, M., & Li, H. (2020). Digital analysis of the geometric variability of Guadua, Moso and Oldhamii bamboo. Construction and Building Materials, 236, 117535. doi:10.1016/j.conbuildmat.2019.117535.

Rini, D. S., Ishiguri, F., Nezu, I., Ngadianto, A., Irawati, D., Otani, N., Ohshima, J., & Yokota, S. (2023). Geographic and longitudinal variations of anatomical characteristics and mechanical properties in three bamboo species naturally grown in Lombok Island, Indonesia. Scientific Reports, 13(1), 2265. doi:10.1038/s41598-023-29288-3.

Deng, J., Chen, F., Wang, G., & Zhang, W. (2016). Variation of Parallel-to-Grain Compression and Shearing Properties in Moso Bamboo Culm (Phyllostachys pubescens). BioResources, 11(1), 1784–1795. doi:10.15376/BIORES.11.1.1784-1795.

Correal, D. J. F., & Juliana Arbeláez, C. (2010). Influence of age and height position on colombian Guadua angustifolia bamboo mechanical properties. Maderas: Ciencia y Tecnologia, 12(2), 105–113. doi:10.4067/S0718-221X2010000200005.

Dessalegn, Y., Singh, B., & van Vuure, A. W. (2021). Analyze the Significance of Age and Height on the Physical and Chemical Properties of Ethiopian Giant Timber Bamboo. American Journal of Engineering and Applied Sciences, 14(2), 185–197. doi:10.3844/ajeassp.2021.185.197.

Sharma, B., & Van Der Vegte, A. (2019). Engineered bamboo for structural applications. Nonconventional and Vernacular Construction Materials: Characterisation, Properties and Applications, 597–623. doi:10.1016/B978-0-08-102704-2.00021-4.

Wang, Y. Y., Li, Y. Q., Xue, S. S., Zhu, W. Bin, Wang, X. Q., Huang, P., & Fu, S. Y. (2022). Superstrong, Lightweight, and Exceptional Environmentally Stable SiO2@GO/Bamboo Composites. ACS Applied Materials and Interfaces, 14(5), 7311–7320. doi:10.1021/acsami.1c22503.

Qaiser, S., Hameed, A., Alyousef, R., Aslam, F., & Alabduljabbar, H. (2020). Flexural strength improvement in bamboo reinforced concrete beams subjected to pure bending. Journal of Building Engineering, 31, 101289. doi:10.1016/j.jobe.2020.101289.

Lucena, J. R. P. G., & Dela Cruz, O. G. D. (2023). A Literature Review on the Use of Bamboo as a Truss Member and Fiber-Reinforced Polymer as a Truss Jointing Material. International Journal of Integrated Engineering, 15(2), 172–185. doi:10.30880/ijie.2023.15.02.017.

Mofidi, A., Abila, J., & Ng, J. T. M. (2020). Novel advanced composite bamboo structural members with bio-based and synthetic matrices for sustainable construction. Sustainability (Switzerland), 12(6), 2485. doi:10.3390/su12062485.

Tri Puspitasari, E. (2023). Experimental Study of Flexural Capacity Strength In-Plane Load On Wall Panels Using Autoclaved Aerated Concrete Block and Bamboo Reinforcement. International Journal of GEOMATE, 24(103), 17-25. doi:10.21660/2023.103.3325.

Li, H. T., Liu, R., Lorenzo, R., Wu, G., & Wang, L. Bin. (2019). Eccentric compression properties of laminated bamboo columns with different slenderness ratios. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 172(5), 315–326. doi:10.1680/jstbu.18.00007.

Cook, D. J., Pama, R. P., & Singh, R. V. (1978). The behaviour of bamboo-reinforced concrete columns subjected to eccentric loads. Magazine of Concrete Research, 30(104), 145–151. doi:10.1680/macr.1978.30.104.145.

Richardson, C., & Mofidi, A. (2021). Non-Linear Numerical Modelling of Sustainable Advanced Composite Columns Made from Bamboo Culms. Construction Materials, 1(3), 169–187. doi:10.3390/constrmater1030011.

Nie, Y., Wei, Y., Huang, L., Liu, Y., & Dong, F. (2021). Influence of slenderness ratio and sectional geometry on the axial compression behavior of original bamboo columns. Journal of Wood Science, 67(1), 36. doi:10.1186/s10086-021-01968-6.

Tan, C., Li, H., Wei, D., Lorenzo, R., & Yuan, C. (2020). Mechanical performance of parallel bamboo strand lumber columns under axial compression: Experimental and numerical investigation. Construction and Building Materials, 231, 117168. doi:10.1016/j.conbuildmat.2019.117168.

Tan, C., Li, H., Ashraf, M., Corbi, I., Corbi, O., & Lorenzo, R. (2021). Evaluation of axial capacity of engineered bamboo columns. Journal of Building Engineering, 34, 102039. doi:10.1016/j.jobe.2020.102039.

Li, H., Su, J., Xiong, Z., Ashraf, M., Corbi, I., & Corbi, O. (2020). Evaluation on the ultimate bearing capacity for laminated bamboo lumber columns under eccentric compression. Structures, 28, 1572–1579. doi:10.1016/j.istruc.2020.10.004.

Liu, S., Gao, D., Xie, Y., & Chen, B. (2022). Experimental Study and Theoretical Analysis of Side-Pressure Laminated Bamboo Lumber Columns under Axial Compression. Sustainability (Switzerland), 14(18), 11360. doi:10.3390/su141811360.

Su, Y., Zou, J., & Lu, W. (2022). A macroscopic shear angle model for ultimate bearing capacity of glued laminated bamboo hollow columns under axial compression. Structures, 45, 560–571. doi:10.1016/j.istruc.2022.09.017.

Li, H., Su, J., Deeks, A. J., Zhang, Q., Wei, D., & Yuan, C. (2015). Eccentric Compression Performance of Parallel Bamboo Strand Lumber Columns. BioResources, 10(4), 7065-7080. doi:10.15376/biores.10.4.7065-7080.

Su, Y., Zou, J., & Lu, W. (2022). Evaluating the Ultimate Bearing Capacity of Glued Laminated Bamboo Hollow Columns under Eccentric Compression. BioResources, 17(3), 5372–5392. doi:10.15376/biores.17.3.5372-5392.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372, 71. doi:10.1136/bmj.n71.

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. doi:10.1371/journal.pmed.1000097.

Tang, S., Zhou, A., & Li, J. (2021). Mechanical Properties and Strength Grading of Engineered Bamboo Composites in China. Advances in Civil Engineering, 2021, 1–13. doi:10.1155/2021/6666059.

Harelimana, V., Zhu, J., Yuan, J., & Uwitonze, C. (2022). Investigating the bamboo as alternative partial replacement of steel bars in concrete reinforcement members. Structural Design of Tall and Special Buildings, 31(6), e1921. doi:10.1002/tal.1921.

Huang, Y., Ji, Y., & Yu, W. (2019). Development of bamboo scrimber: a literature review. Journal of Wood Science, 65(1), 25. doi:10.1186/s10086-019-1806-4.

Huang, D., Bian, Y., Zhou, A., & Sheng, B. (2015). Experimental study on stress-strain relationships and failure mechanisms of parallel strand bamboo made from phyllostachys. Construction and Building Materials, 77, 130–138. doi:10.1016/j.conbuildmat.2014.12.012.

Huang, D., Bian, Y., Huang, D., Zhou, A., & Sheng, B. (2015). An ultimate-state-based-model for inelastic analysis of intermediate slenderness PSB columns under eccentrically compressive load. Construction and Building Materials, 94, 306–314. doi:10.1016/j.conbuildmat.2015.06.059.

Chen, J., Guagliano, M., Shi, M., Jiang, X., & Zhou, H. (2021). A comprehensive overview of bamboo scrimber and its new development in China. European Journal of Wood and Wood Products, 79(2), 363–379. doi:10.1007/s00107-020-01622-w.

Dixon, P. G., & Gibson, L. J. (2014). The structure and mechanics of Moso bamboo material. Journal of the Royal Society Interface, 11(99), 20140321. doi:10.1098/rsif.2014.0321.

Zhan, Y., Huang, W., Si, R., Xiang, T., & Hao, L. (2023). Shear Behavior of Notched Connection for Glubam-Geopolymer Concrete Composite Structures: Experimental Investigation. BioResources, 18(1), 701–719. doi:10.15376/biores.18.1.701-719.

Zhang, H., Gharavi, N., Wong, S. H. F., Deng, Y., Bahadori-Jahromi, A., Limkatanyu, S., Qiao, Y., & Kuang, J. S. (2022). Effect of concentrated Butt-Joints on flexural properties of laminated Bamboo-Timber flitch beams. Journal of Sandwich Structures and Materials, 24(2), 1226–1244. doi:10.1177/10996362211040103.

Sharma, B., Gatoo, A., Bock, M., Mulligan, H., & Ramage, M. (2015). Engineered bamboo: State of the art. Proceedings of Institution of Civil Engineers: Construction Materials, 168(2), 57–67. doi:10.1680/coma.14.00020.

Hong, C., Li, H., Xiong, Z., Lorenzo, R., Corbi, I., Corbi, O., Wei, D., Yuan, C., Yang, D., & Zhang, H. (2020). Review of connections for engineered bamboo structures. Journal of Building Engineering, 30, 101324. doi:10.1016/j.jobe.2020.101324.

Kadivar, M., Gauss, C., Ghavami, K., & Savastano, H. (2020). Densification of bamboo: State of the art. Materials, 13(19), 1–25. doi:10.3390/ma13194346.

Sánchez Cruz, M. L., & Morales, L. Y. (2019). Influence of moisture content on the mechanical properties of Guadua Culms. Inge Cuc, 15(1), 99–108. doi:10.17981/ingecuc.15.1.2019.09.

Sylvayanti, S. P., Nugroho, N., & Bahtiar, E. T. (2023). Bamboo Scrimber’s Physical and Mechanical Properties in Comparison to Four Structural Timber Species. Forests, 14(1), 146. doi:10.3390/f14010146.

Kumar, A., Vlach, T., Laiblova, L., Hrouda, M., Kasal, B., Tywoniak, J., & Hajek, P. (2016). Engineered bamboo scrimber: Influence of density on the mechanical and water absorption properties. Construction and Building Materials, 127, 815–827. doi:10.1016/j.conbuildmat.2016.10.069.

Sharma, B., Gatóo, A., Bock, M., & Ramage, M. (2015). Engineered bamboo for structural applications. Construction and Building Materials, 81, 66–73. doi:10.1016/j.conbuildmat.2015.01.077.

Correal, J. F., Echeverry, J. S., Ramírez, F., & Yamín, L. E. (2014). Experimental evaluation of physical and mechanical properties of Glued Laminated Guadua angustifolia Kunth. Construction and Building Materials, 73, 105–112. doi:10.1016/j.conbuildmat.2014.09.056.

Xiao, Y., Yang, R. Z., & Shan, B. (2013). Production, environmental impact and mechanical properties of Glubam. Construction and Building Materials, 44, 765–773. doi:10.1016/j.conbuildmat.2013.03.087.

Chen, G., Yu, Y., Li, X., & He, B. (2020). Mechanical behavior of laminated bamboo lumber for structural application: an experimental investigation. European Journal of Wood and Wood Products, 78(1), 53–63. doi:10.1007/s00107-019-01486-9.

Ahmad, M., & Kamke, F. A. (2011). Properties of parallel strand lumber from Calcutta bamboo (Dendrocalamus strictus). Wood Science and Technology, 45(1), 63–72. doi:10.1007/s00226-010-0308-8.

Li, H., Qiu, Z., Wu, G., Corbi, O., Wei, D., Wang, L., Corbi, I., & Yuan, C. (2019). Slenderness Ratio Effect on Eccentric Compression Properties of Parallel Bamboo Strand Lumber Columns. Journal of Structural Engineering, 145(8). doi:10.1061/(asce)st.1943-541x.0002372.

Çavuş, V., & Ersin, İ. (2023). Determination of Some Physical and Mechanical Properties of Parallel-strand Lumber Manufactured with Bamboo (Phyllostachys bambusoides). BioResources, 18(4), 6802–6814. doi:10.15376/biores.18.4.6802-6814.

Wang, Y. Y., Wang, X. Q., Li, Y. Q., Huang, P., Yang, B., Hu, N., & Fu, S. Y. (2021). High-Performance Bamboo Steel Derived from Natural Bamboo. ACS Applied Materials and Interfaces, 13(1), 1431–1440. doi:10.1021/acsami.0c18239.

Han, S., Chen, F., Ye, H., Zheng, Z., Chen, L., & Wang, G. (2023). Bamboo-Inspired Renewable, High-Strength, Vibration-Damping Composites for Structural Applications. ACS Sustainable Chemistry and Engineering, 11(3), 1146–1156. doi:10.1021/acssuschemeng.2c06490.

Sewar, Y. Y., Zhang, Z., Meng, X., Wahan, M. Y., Qi, H., Al-Shami, Q. M., & Luo, S. (2022). Mechanical properties and constitutive relationship of the high-durable parallel strand bamboo. Journal of Renewable Materials, 10(1), 219–235. doi:10.32604/jrm.2021.016013.

Sharma, B., Gatóo, A., & Ramage, M. H. (2015). Effect of processing methods on the mechanical properties of engineered bamboo. Construction and Building Materials, 83, 95–101. doi:10.1016/j.conbuildmat.2015.02.048.

Yang, D., Li, H., Xiong, Z., Mimendi, L., Lorenzo, R., Corbi, I., Corbi, O., & Hong, C. (2020). Mechanical properties of laminated bamboo under off-axis compression. Composites Part A: Applied Science and Manufacturing, 138, 106042. doi:10.1016/j.compositesa.2020.106042.

Li, H., Qiu, Z., Wu, G., Wei, D., Lorenzo, R., Yuan, C., Zhang, H., & Liu, R. (2019). Compression behaviors of parallel bamboo strand lumber under static loading. Journal of Renewable Materials, 7(7), 583–600. doi:10.32604/jrm.2019.07592.

Shangguan, W., Gong, Y., Zhao, R., & Ren, H. (2016). Effects of heat treatment on the properties of bamboo scrimber. Journal of Wood Science, 62(5), 383–391. doi:10.1007/s10086-016-1574-3.

Zhao, W., Zhou, J., Long, Z., & Peng, W. (2018). Compression performance of thin-walled square steel tube/bamboo plywood composite hollow columns with binding bars. Advances in Structural Engineering, 21(3), 347–364. doi:10.1177/1369433217718982.

Zhao, W., Zhou, J., & Long, Z. (2016). Compression tests on square, thin-walled steel tube/bamboo-plywood composite hollow columns. Science and Engineering of Composite Materials, 23(5), 511–522. doi:10.1515/secm-2014-0117.

Lei, M., Wang, Z., Li, P., Zeng, L., Liu, H., Zhang, Z., & Su, H. (2020). Experimental Investigation on Short Concrete Columns Reinforced by Bamboo Scrimber under Axial Compression Loads. Advances in Civil Engineering, 2020, 1–12. doi:10.1155/2020/8886384.

Jiang, Y., Zhou, H., Beer, M., Wang, L., Zhang, J., & Zhao, L. (2017). Robustness of Load and Resistance Design Factors for RC Columns with Wind-Dominated Combination Considering Random Eccentricity. Journal of Structural Engineering, 143(4), 04016221. doi:10.1061/(asce)st.1943-541x.0001720.

Zhou, K., Li, H., Dauletbek, A., Yang, D., Xiong, Z., Lorenzo, R., Zhou, K., Corbi, I., & Corbi, O. (2022). Slenderness ratio effect on the eccentric compression performance of chamfered laminated bamboo lumber columns. Journal of Renewable Materials, 10(1), 165–182. doi:10.32604/jrm.2021.017223.

Hong, C., Li, H., Xiong, Z., Lorenzo, R., Corbi, I., & Corbi, O. (2021). Experimental and numerical study on eccentric compression properties of laminated bamboo columns with a chamfered section. Journal of Building Engineering, 43, 102901. doi:10.1016/j.jobe.2021.102901.

Wang, X., Zhou, A., & Chui, Y. H. (2018). Load-carrying capacity of intermediately slender parallel strand bamboo columns with a rectangular cross section under biaxial eccentric compression. BioResources, 13(1), 313–330. doi:10.15376/biores.13.1.313-330.

Li, H. T., Chen, G., Zhang, Q., Ashraf, M., Xu, B., & Li, Y. (2016). Mechanical properties of laminated bamboo lumber column under radial eccentric compression. Construction and Building Materials, 121, 644–652. doi:10.1016/j.conbuildmat.2016.06.031.

Li, H. tao, Wu, G., Zhang, Q. sheng, & Su, J. W. (2016). Mechanical evaluation for laminated bamboo lumber along two eccentric compression directions. Journal of Wood Science, 62(6), 503–517. doi:10.1007/s10086-016-1584-1.

Jian, B., Li, H., Zhou, K., Ashraf, M., Xiong, Z., & Zheng, X. (2023). Mechanical evaluation on BFRP laminated bamboo lumber columns under eccentric compression. Advances in Structural Engineering, 26(5), 809–823. doi:10.1177/13694332221138312.

Beer, F., Johnston, E., & DeWolf, J. (2019). Mechanics of materials (8th Ed.). Tata McGraw Hill, New York, United States.

Hibbeler, R. (2017). Structural Analysis (10th Ed.). Pearson Education Limited, Harlow, United Kingdom.

Gere, J. M., & Goodno, B. J. (2015). Mechanics of materials. Langara College, Vancouver, Canada.

Hibbeler, R. (2022). Mechanics of Materials (11th Ed.). Pearson Education Limited, Harlow, United Kingdom.

Callister, W. D., Rethwisch, D. G., Blicblau, A., Bruggeman, K., Cortie, M., Long, J., ... & Mitchell, R. (2007). Materials science and engineering: an introduction. John Wiley & Sons, Hoboken, United States.

Dowling, N. E. (2013). Mechanical Behavior of Materials eBook: International Edition. Pearson Higher Education, London, United Kingdom.

Huang, Z., Chen, Z., Huang, D., Chui, Y. H., & Bian, Y. (2018). An inelastic model for analyzing intermediately slender engineered bamboo/wood columns subjected to biaxial bending and compression. BioResources, 13(2), 2814–2833. doi:10.15376/biores.13.2.2814-2833.

Chen, S., Wei, Y., Hu, Y., Zhai, Z., & Wang, L. (2020). Behavior and strength of rectangular bamboo scrimber columns with shape and slenderness effects. Materials Today Communications, 25, 101392. doi:10.1016/j.mtcomm.2020.101392.

Guenther, L., & Joubert, M. (2017). Science communication as a field of research: Identifying trends, challenges and gaps by analysing research papers. Journal of Science Communication, 16(2), 2. doi:10.22323/2.16020202.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-03-020

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Franklyn Flores Manggapis

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message