Evaluating Recycled PET as an Alternative Material for the Construction Sector Towards Sustainability

Omar Albatayneh, Mohammad Nadeem Akhtar


Addressing the environmental threat of Polyethylene Terephthalate (PET) waste is critical for sustainable development. Despite PET's prevalence in everyday products, its improper disposal endangers environmental health. This study targets a pivotal gap in current research. PET waste's potential as a sustainable building material will be thoroughly evaluated, focusing on whether recycling PET waste is feasible. In the construction industry, it can be a substitute for natural sand and an additive in cement. This study contributes to a dual-purpose solution: mitigating environmental pollution and innovating in construction material science. The systematic literature review (SLR) delves into existing studies, focusing on PET's impact on concrete properties when substituting natural sand at ratios of 5% to 20% and as a cement additive at 0.5% to 2% by weight. The findings revealed that up to a 10% PET replacement enhances compressive strength, highlighting a sustainable pathway for construction practices. However, replacements above 10% show a reduction in strength, indicating an optimal substitution threshold. Moreover, incorporating PET additives at 1% by cement weight optimizes flexural strength, underscoring the material's viability in enhancing structural integrity. This study sheds light on PET waste's application in reducing environmental impact and proposes a viable, eco-friendly alternative for construction materials. The recommendation for further research underscores the necessity to refine PET's application in construction, aiming to bridge the knowledge gap and encourage sustainable future innovations.


Doi: 10.28991/CEJ-2024-010-04-020

Full Text: PDF


PET Waste Utilization; Eco-friendly Building Materials; PET in Civil Engineering; Recycled Plastic Aggregate Innovation.


United Nations. (1992). Report of The United Nations Conference on Environment and Development. A/CONF.151/26, Vol. I), 1-5.

Akhtar, M. N., Jameel, M., Ibrahim, Z., & Bunnori, N. M. (2022). Incorporation of recycled aggregates and silica fume in concrete: an environmental savior-a systematic review. Journal of Materials Research and Technology, 20, 4525–4544. doi:10.1016/j.jmrt.2022.09.021.

Akhtar, M. N., & Tarannum, N. (2018). Flyash as a resource material in construction industry: a clean approach to environment management. Sustainable Construction and Building Materials, Springer, Singapore. doi:10.5772/intechopen.82078.

Lajčin, D., & Guzoňová, V. (2023). Identification of Knowledge Management Barriers in Scientific R&D Projects in Czech Academic Environment. HighTech and Innovation Journal, 4(1), 19-36. doi:10.28991/HIJ-2023-04-01-02.

Prasad Bhatta, D., Singla, S., & Garg, R. (2022). Experimental investigation on the effect of Nano-silica on the silica fume-based cement composites. Materials Today: Proceedings, 57, 2338–2343. doi:10.1016/j.matpr.2022.01.190.

Akhtar, M. N., Ibrahim, Z., Bunnori, N. M., Jameel, M., Tarannum, N., & Akhtar, J. N. (2021). Performance of sustainable sand concrete at ambient and elevated temperature. Construction and Building Materials, 280, 122404. doi:10.1016/j.conbuildmat.2021.122404.

Akhtar, M. N., Jameel, M., Ibrahim, Z., Muhamad Bunnori, N., & Bani-Hani, K. A. (2024). Development of sustainable modified sand concrete: An experimental study. Ain Shams Engineering Journal, 15(1), 102331. doi:10.1016/j.asej.2023.102331.

Akhtar, M. N., Bani-Hani, K. A., Akhtar, J. N., Khan, R. A., Nejem, J. K., & Zaidi, K. (2022). Flyash-based bricks: an environmental savior—a critical review. Journal of Material Cycles and Waste Management, 24(5), 1663–1678. doi:10.1007/s10163-022-01436-3.

Alhajiri, A. M., & Akhtar, M. N. (2023). Enhancing Sustainability and Economics of Concrete Production through Silica Fume: A Systematic Review. Civil Engineering Journal, 9(10), 2612–2629. doi:10.28991/CEJ-2023-09-10-017.

Ahmad Khan, R., Nisar Akhtar, J., Ahmad Khan, R., & Nadeem Akhtar, M. (2023). Experimental study on fine-crushed stone dust a solid waste as a partial replacement of cement. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.03.222.

Akhtar, M. N., Bani-Hani, K. A., Malkawi, D. A. H., & Malkawi, A. I. H. (2023). Porous Asphalt Mix Design Pavement by Incorporating a Precise Proportion of Recycled Coarse Aggregate. International Journal of Pavement Research and Technology, 1–12. doi:10.1007/s42947-023-00406-8.

Akhtar, M. N., Husein Malkawi, D. A., Bani-Hani, K. A., & Husein Malkawi, A. I. (2023). Durability Assessment of Sustainable Mortar by Incorporating the Combination of Solid Wastes: An Experimental Study. Civil Engineering Journal, 9(11), 2770–2786. doi:10.28991/CEJ-2023-09-11-09.

Kaniraj, S. R., & Gayathri, V. (2003). Geotechnical behavior of fly ash mixed with randomly oriented fiber inclusions. Geotextiles and Geomembranes, 21(3), 123-149. doi:10.1016/S0266-1144(03)00005-0.

Akhtar, M. N. (2012). Role of soil mechanics in civil engineering. International Journal of Emerging trends in Engineering and Development, 2(6), 104-111.

Akhtar, M. N., Hattamleh, O., & Akhtar, J. N. (2017). Feasibility of coal fly ash based bricks and roof tiles as construction materials: A review. MATEC Web of Conferences, 120, 3008. doi:10.1051/matecconf/201712003008.

Kamaruddin, M. A., Abdullah, M. M. A., Zawawi, M. H., & Zainol, M. R. R. A. (2017). Potential use of plastic waste as construction materials: Recent progress and future prospect. IOP Conference Series: Materials Science and Engineering, 267(1), 12011. doi:10.1088/1757-899X/267/1/012011.

Kryeziu, D., Selmani, F., Mujaj, A., & Kondi, I. (2023). Recycled concrete aggregates: a promising and sustainable option for the construction industry. Journal of Human, Earth, and Future, 4(2), 166-180. doi:10.28991/HEF-2023-04-02-03.

Akhtar, M., Khan, M., & Akhtar, J. (2014). Use of the Falling-head Method to Assess Permeability of Fly Ash Based Roof Tiles with Waste Polythene Fibre. International Journal of Scientific & Engineering Research, 5(12), 476–483.

Akhtar, M. N., Akhtar, J., Hattamleh, O. H. Al, & Halahla, A. M. (2016). Sustainable Fly Ash Based Roof Tiles with Waste Polythene Fibre: An Experimental Study. Open Journal of Civil Engineering, 6(2), 314–327. doi:10.4236/ojce.2016.62026.

Padgelwar, S., Nandan, A., & Mishra, A. K. (2021). Plastic waste management and current scenario in India: a review. International Journal of Environmental Analytical Chemistry, 101(13), 1894–1906. doi:10.1080/03067319.2019.1686496.

Hossain, R., Islam, M. T., Shanker, R., Khan, D., Locock, K. E. S., Ghose, A., Schandl, H., Dhodapkar, R., & Sahajwalla, V. (2022). Plastic Waste Management in India: Challenges, Opportunities, and Roadmap for Circular Economy. Sustainability, 14(8), 4425. doi:10.3390/su14084425.

Faraca, G., & Astrup, T. (2019). Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Management, 95, 388–398. doi:10.1016/j.wasman.2019.06.038.

Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, 330. doi:10.1016/j.cscm.2020.e00330.

Choi, Y. W., Moon, D. J., Chung, J. S., & Cho, S. K. (2005). Effects of waste PET bottles aggregate on the properties of concrete. Cement and Concrete Research, 35(4), 776–781. doi:10.1016/j.cemconres.2004.05.014.

Akhtar, M., Halahla, A., & Almasri, A. (2021). Experimental study on compressive strength of recycled aggregate concrete under high temperature. SDHM Structural Durability and Health Monitoring, 15(4), 335–348. doi:10.32604/sdhm.2021.015988.

Akçaözoǧlu, S., Atiş, C. D., & Akçaözoǧlu, K. (2010). An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Management, 30(2), 285–290. doi:10.1016/j.wasman.2009.09.033.

Rahmani, E., Dehestani, M., Beygi, M. H. A., Allahyari, H., & Nikbin, I. M. (2013). On the mechanical properties of concrete containing waste PET particles. Construction and Building Materials, 47, 1302–1308. doi:10.1016/j.conbuildmat.2013.06.041.

Saikia, N., & De Brito, J. (2014). Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Construction and Building Materials, 52, 236–244. doi:10.1016/j.conbuildmat.2013.11.049.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., and Prisma Group, (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269. doi:10.7326/0003-4819-151-4-200908180-00135.

Félix, M., Martín-Alfonso, J. E., Romero, A., & Guerrero, A. (2014). Development of albumen/soy biobased plastic materials processed by injection molding. Journal of Food Engineering, 125, 7-16. doi:10.1016/j.jfoodeng.2013.10.018.

PlasticsEurope. (2016). Plastics—The Facts 2016: An Analysis of European Plastics Production, Demand and Waste Data. PlasticsEurope, Brussels, Belgium.

Wu, C., Nahil, M. A., Miskolczi, N., Huang, J., & Williams, P. T. (2014). Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. Environmental Science and Technology, 48(1), 819–826. doi:10.1021/es402488b.

Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308–326. doi:10.1016/j.enconman.2016.02.037.

Govindan, S., Ramos, M., & Al Jumaily, A. M. (2023). A Review of Biodegradable Polymer Blends and Polymer Composite for Flexible Food Packaging Application. Materials Science Forum, 1094, 51–60. doi:10.4028/p-DC7WkH.

Benítez, A., Sánchez, J. J., Arnal, M. L., Müller, A. J., Rodríguez, O., & Morales, G. (2013). Abiotic degradation of LDPE and LLDPE formulated with a pro-oxidant additive. Polymer Degradation and Stability, 98(2), 490–501. doi:10.1016/j.polymdegradstab.2012.12.011.

Nomadolo, N., Mtibe, A., Ofosu, O., Mekoa, C., Letwaba, J., & Muniyasamy, S. (2024). The Effect of Mechanical Recycling on the Thermal, Mechanical, and Chemical Properties of Poly (Butylene Adipate-Co-Terephthalate) (PBAT), Poly (Butylene Succinate) (PBS), Poly (Lactic Acid) (PLA), PBAT-PBS Blend and PBAT-TPS Biocomposite. Journal of Polymers and the Environment, 1–16. doi:10.1007/s10924-023-03151-y.

Popović, K., Živanović, S., & Jevtić, I. (2024). Biopolymer Packaging Materials in the Pharmaceutical Industry. AIDASCO Reviews, 2(1), 46–56. doi:10.59783/aire.2024.43.

Perez Bravo, J. J., Gerbehaye, C., Raquez, J. M., & Mincheva, R. (2024). Recent Advances in Solid-State Modification for Thermoplastic Polymers: A Comprehensive Review. Molecules, 29(3), 667. doi:10.3390/molecules29030667.

Chaudhari, U. S., Lin, Y., Thompson, V. S., Handler, R. M., Pearce, J. M., Caneba, G., Muhuri, P., Watkins, D., & Shonnard, D. R. (2021). Systems Analysis Approach to Polyethylene Terephthalate and Olefin Plastics Supply Chains in the Circular Economy: A Review of Data Sets and Models. ACS Sustainable Chemistry and Engineering, 9(22), 7403–7421. doi:10.1021/acssuschemeng.0c08622.

Trejo-Carbajal, N., Ambriz-Luna, K. I., & Herrera-González, A. M. (2022). Efficient method and mechanism of depolymerization of PET under conventional heating and microwave radiation using t-BuNH2/Lewis acids. European Polymer Journal, 175, 111388. doi:10.1016/j.eurpolymj.2022.111388.

Martínez-García, R., Sánchez de Rojas, M. I., Jagadesh, P., López-Gayarre, F., Morán-del-Pozo, J. M., & Juan-Valdes, A. (2022). Effect of pores on the mechanical and durability properties on high strength recycled fine aggregate mortar. Case Studies in Construction Materials, 16, 1050. doi:10.1016/j.cscm.2022.e01050.

Smith, A. (2020). Ultraviolet Photo-Chemical Degradation of Polyethylene Terephthalate for Use as an Alternative Recycling Method. Ph.D. Thesis, Illinois Institute of Technology, Chicago, United States.

Ferreira, M. M., da Silva, E. A., Cotting, F., & Lins, V. de F. C. (2021). UV weathering and performance of a novel corrosion protective coating on steel made from recycled polyethylene terephthalate (PET). Corrosion Engineering Science and Technology, 56(3), 199–209. doi:10.1080/1478422X.2020.1836880.

Bharadwaj, A., Yadav, D., & Varshney, S. (2015). Non-biodegradable waste–its impact & safe disposal. International Journal on Advanced Science, Engineering and Information Technology, 3(1), 184-191.

Francis, R. (2016). Recycling of polymers: Methods, characterization and applications. In Recycling of Polymers: Methods, Characterization and Applications. John Wiley & Sons, Hoboken, United States. doi:10.1002/9783527689002.

Askar, M. K., Al-Kamaki, Y. S. S., & Hassan, A. (2023). Utilizing Polyethylene Terephthalate PET in Concrete: A Review. Polymers, 15(15), 3320. doi:10.3390/polym15153320.

Bovea, M. D., Ibáñez-Forés, V., Gallardo, A., & Colomer-Mendoza, F. J. (2010). Environmental assessment of alternative municipal solid waste management strategies. A Spanish case study. Waste Management, 30(11), 2383–2395. doi:10.1016/j.wasman.2010.03.001.

Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L., & Fraternali, F. (2017). Recycling of plastic solid waste: A state of art review and future applications. Composites Part B: Engineering, 115, 409–422. doi:10.1016/j.compositesb.2016.09.013.

Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24–58. doi:10.1016/j.wasman.2017.07.044.

Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536–542. doi:10.1016/j.jhazmat.2007.06.076.

Matsumura, S. (2002). Enzyme-catalyzed synthesis and chemical recycling of polyesters. Macromolecular Bioscience, 2(3), 105–126. doi:10.1002/1616-5195(20020401)2:3<105::AID-MABI105>3.0.CO;2-K.

Karayannidis, G. P., & Achilias, D. S. (2007). Chemical Recycling of Poly(ethylene terephthalate). Macromolecular Materials and Engineering, 292(2), 128–146. Portico. doi:10.1002/mame.200600341.

Kosmidis, V. A., Achilias, D. S., & Karayannidis, G. P. (2001). Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid. Kinetics of a phase transfer catalyzed alkaline hydrolysis. Macromolecular Materials and Engineering, 286(10), 640–647. doi:10.1002/1439-2054(20011001)286:10<640::AID-MAME640>3.0.CO;2-1.

López-Fonseca, R., Duque-Ingunza, I., de Rivas, B., Flores-Giraldo, L., & Gutiérrez-Ortiz, J. I. (2011). Kinetics of catalytic glycolysis of PET wastes with sodium carbonate. Chemical Engineering Journal, 168(1), 312–320. doi:10.1016/j.cej.2011.01.031.

Yang, Y., Lu, Y., Xiang, H., Xu, Y., & Li, Y. (2002). Study on methanolytic depolymerization of PET with supercritical methanol for chemical recycling. Polymer Degradation and Stability, 75(1), 185–191. doi:10.1016/S0141-3910(01)00217-8.

Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625–2643. doi:10.1016/j.wasman.2009.06.004.

Fisher, M. M., Mark, F. E., Kingsbury, T., Vehlow, J., & Yamawaki, T. (2005). Energy recovery in the sustainable recycling of plastics from end-of-life electrical and electronic products. Proceedings of the 2005 IEEE International Symposium on Electronics and the Environment, 2005. doi:10.1109/isee.2005.1436999.

Andrady, A. L. (2003). Plastics and the Environment. John Wiley & Sons, Hoboken, New Jersey. doi:10.1002/0471721557.

Bernat, K. (2023). Post-Consumer Plastic Waste Management: From Collection and Sortation to Mechanical Recycling. Energies, 16(8), 3504. doi:10.3390/en16083504.

Ghosal, K., & Nayak, C. (2022). Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions-hope vs. hype. Materials Advances, 3(4), 1974–1992. doi:10.1039/d1ma01112j.

Liu, Y., Fu, W., Liu, T., Zhang, Y., & Li, B. (2022). Microwave pyrolysis of polyethylene terephthalate (PET) plastic bottle sheets for energy recovery. Journal of Analytical and Applied Pyrolysis, 161, 105414. doi:10.1016/j.jaap.2021.105414.

Negi, A., Hariwal, R. V., Semwal, A., Kanjilal, D., Rana, J. M. S., & Ramola, R. C. (2011). The role of electronic energy loss in PET polymer. Radiation Effects and Defects in Solids, 166(8–9), 621–627. doi:10.1080/10420150.2011.578630.

Dos Santos Pereira, A. P., Da Silva, M. H. P., Lima, É. P., Dos Santos Paula, A., & Tommasini, F. J. (2017). Processing and characterization of PET composites reinforced with geopolymer concrete waste. Materials Research, 20, 411–420. doi:10.1590/1980-5373-MR-2017-0734.

Aneke, F. I., Awuzie, B. O., Mostafa, M. M. H., & Okorafor, C. (2021). Durability assessment and microstructure of high-strength performance bricks produced from pet waste and foundry sand. Materials, 14(19), 5635. doi:10.3390/ma14195635.

Lee, Z. H., Paul, S. C., Kong, S. Y., Susilawati, S., & Yang, X. (2019). Modification of Waste Aggregate PET for Improving the Concrete Properties. Advances in Civil Engineering, 2019, 1–10. doi:10.1155/2019/6942052.

Kangavar, M. E., Lokuge, W., Manalo, A., Karunasena, W., & Frigione, M. (2022). Investigation on the properties of concrete with recycled polyethylene terephthalate (PET) granules as fine aggregate replacement. Case Studies in Construction Materials, 16, 934. doi:10.1016/j.cscm.2022.e00934.

Choudhary, K., Sangwan, K. S., & Goyal, D. (2019). Environment and economic impacts assessment of PET waste recycling with conventional and renewable sources of energy. Procedia CIRP, 80, 422–427. doi:10.1016/j.procir.2019.01.096.

Benavides, P. T., Dunn, J. B., Han, J., Biddy, M., & Markham, J. (2018). Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles. ACS Sustainable Chemistry and Engineering, 6(8), 9725–9733. doi:10.1021/acssuschemeng.8b00750.

Siddique, R., Khatib, J., & Kaur, I. (2008). Use of recycled plastic in concrete: A review. Waste Management, 28(10), 1835–1852. doi:10.1016/j.wasman.2007.09.011.

Rahimi, A. R., & Garciá, J. M. (2017). Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry, 1(6), 46. doi:10.1038/s41570-017-0046.

Zare, Y. (2015). 3Recycled Polymers: Properties and Applications. Recycled Polymers: Properties and Applications, Volume 2, 2, 27.

Gallop, W. A., Evans, M. G., & Mithal, A. K. (2009). U.S. Patent Application No. 12/455,322. The United States Patent and Trademark Office (USPTO), Alexandria, United States.

Grigore, M. E. (2017). Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling, 2(4), 24. doi:10.3390/recycling2040024.

Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel, B. T., Hoh, E., Karapanagioti, H. K., Rios-Mendoza, L. M., Takada, H., Teh, S., & Thompson, R. C. (2013). Classify plastic waste as hazardous. Nature, 494(7436), 169–171. doi:10.1038/494169a.

Lazorenko, G., Kasprzhitskii, A., & Fini, E. H. (2022). Polyethylene terephthalate (PET) waste plastic as natural aggregate replacement in geopolymer mortar production. Journal of Cleaner Production, 375, 134083. doi:10.1016/j.jclepro.2022.134083.

Nandy, B., Sharma, G., Garg, S., Kumari, S., George, T., Sunanda, Y., & Sinha, B. (2015). Recovery of consumer waste in India - A mass flow analysis for paper, plastic and glass and the contribution of households and the informal sector. Resources, Conservation and Recycling, 101, 167–181. doi:10.1016/j.resconrec.2015.05.012.

Pan, D., Su, F., Liu, C., & Guo, Z. (2020). Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 3(4), 443–461. doi:10.1007/s42114-020-00190-0.

Reis, J. M. L., & Carneiro, E. P. (2012). Evaluation of PET waste aggregates in polymer mortars. Construction and Building Materials, 27(1), 107–111. doi:10.1016/j.conbuildmat.2011.08.020.

Spósito, F. A., Higuti, R. T., Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Assunção, C. C., Bortoletto, M., Silva, R. G., & Fioriti, C. F. (2020). Incorporation of PET wastes in rendering mortars based on Portland cement/hydrated lime. Journal of Building Engineering, 32, 101506. doi:10.1016/j.jobe.2020.101506.

da Luz Garcia, M., Oliveira, M. R., Silva, T. N., & Castro, A. C. M. (2021). Performance of mortars with PET. Journal of Material Cycles and Waste Management, 23(2), 699–706. doi:10.1007/s10163-020-01160-w.

Abed, J. M., Khaleel, B. A., Aldabagh, I. S., & Sor, N. H. (2021). The effect of recycled plastic waste polyethylene terephthalate (PET) on characteristics of cement mortar. Journal of Physics: Conference Series, 1973(1), 12121. doi:10.1088/1742-6596/1973/1/012121.

da Luz Garcia, M., Oliveira, M. R., Silva, T. N., & Castro, A. C. M. (2021). Performance of mortars with PET. Journal of Material Cycles and Waste Management, 23(2), 699–706. doi:10.1007/s10163-020-01160-w.

Hannawi, K., Kamali-Bernard, S., & Prince, W. (2010). Physical and mechanical properties of mortars containing PET and PC waste aggregates. Waste Management, 30(11), 2312–2320. doi:10.1016/j.wasman.2010.03.028.

Dumitrescu, O., Ropotǎ, I., Bratu, M., & Muntean, M. (2011). Reuse of pet waste as thermoplastic composites. Environmental Engineering and Management Journal, 10(8), 1179–1181. doi:10.30638/eemj.2011.169.

Ahmadinia, E., Zargar, M., Karim, M. R., Abdelaziz, M., & Ahmadinia, E. (2012). Performance evaluation of utilization of waste Polyethylene Terephthalate (PET) in stone mastic asphalt. Construction and Building Materials, 36, 984–989. doi:10.1016/j.conbuildmat.2012.06.015.

Ge, Z., Sun, R., Zhang, K., Gao, Z., & Li, P. (2013). Physical and mechanical properties of mortar using waste Polyethylene Terephthalate bottles. Construction and Building Materials, 44, 81–86. doi:10.1016/j.conbuildmat.2013.02.073.

Gürü, M., Çubuk, M. K., Arslan, D., Farzanian, S. A., & Bilici, I. (2014). An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material. Journal of Hazardous Materials, 279, 302–310. doi:10.1016/j.jhazmat.2014.07.018.

Corinaldesi, V., Donnini, J., & Nardinocchi, A. (2015). Lightweight plasters containing plastic waste for sustainable and energy-efficient building. Construction and Building Materials, 94, 337–345. doi:10.1016/j.conbuildmat.2015.07.069.

Sojobi, A. O., Nwobodo, S. E., & Aladegboye, O. J. (2016). Recycling of polyethylene terephthalate (PET) plastic bottle wastes in bituminous asphaltic concrete. Cogent Engineering, 3(1), 1133480. doi:10.1080/23311916.2015.1133480.

Jassim, A. K. (2017). Recycling of Polyethylene Waste to Produce Plastic Cement. Procedia Manufacturing, 8, 635–642. doi:10.1016/j.promfg.2017.02.081.

Thorneycroft, J., Orr, J., Savoikar, P., & Ball, R. J. (2018). Performance of structural concrete with recycled plastic waste as a partial replacement for sand. Construction and Building Materials, 161, 63–69. doi:10.1016/j.conbuildmat.2017.11.127.

Perera, S., Arulrajah, A., Wong, Y. C., Horpibulsuk, S., & Maghool, F. (2019). Utilizing recycled PET blends with demolition wastes as construction materials. Construction and Building Materials, 221, 200–209. doi:10.1016/j.conbuildmat.2019.06.047.

Perca Callomamani, L. A., Hashemian, L., & Sha, K. (2020). Laboratory Investigation of the Performance Evaluation of Fiber-Modified Asphalt Mixes in Cold Regions. Transportation Research Record, 2674(7), 323–335. doi:10.1177/0361198120922213.

Muralidharan, R., Park, T., Yang, H. M., Lee, S. Y., Subbiah, K., & Lee, H. S. (2021). Review of the effects of supplementary cementitious materials and chemical additives on the physical, mechanical and durability properties of hydraulic concrete. Materials, 14(23), 7270. doi:10.3390/ma14237270.

Ramzi, S., & Hajiloo, H. (2022). The effects of supplementary cementitious materials (SCMs) on the residual mechanical properties of concrete after exposure to high temperatures. Buildings, 13(1), 103. doi:10.3390/buildings13010103.

Qaidi, S., Al-Kamaki, Y., Hakeem, I., Dulaimi, A. F., Özkılıç, Y., Sabri, M., & Sergeev, V. (2023). Investigation of the physical-mechanical properties and durability of high-strength concrete with recycled PET as a partial replacement for fine aggregates. Frontiers in Materials, 10, 1101146. doi:10.3389/fmats.2023.1101146.

Mohammed, A. A. (2017). Modelling the mechanical properties of concrete containing PET waste aggregate. Construction and Building Materials, 150, 595–605. doi:10.1016/j.conbuildmat.2017.05.154.

Limami, H., Manssouri, I., Cherkaoui, K., & Khaldoun, A. (2020). Study of the suitability of unfired clay bricks with polymeric HDPE & PET wastes additives as a construction material. Journal of Building Engineering, 27, 100956. doi:10.1016/j.jobe.2019.100956.

Hameed, A. M., & Ahmed, B. A. F. (2019). Employment the plastic waste to produce the light weight concrete. Energy Procedia, 157, 30–38. doi:10.1016/j.egypro.2018.11.160.

Samsudin, M. A., Manaf, A. F. A., Aznan, M. F. F., Zuki, S. S. M., Ramasamy, S., Azmi, M. A. M., & others. (2021). Investigation on Polyethylene Terephthalate (PET) Waste Fiber Performances in Concrete Material. Recent Trends in Civil Engineering and Built Environment, 2(1), 682–690.

Dawood, A. O., AL-Khazraji, H., & Falih, R. S. (2021). Physical and mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates. Case Studies in Construction Materials, 14, 482. doi:10.1016/j.cscm.2020.e00482.

Saxena, R., Gupta, T., Sharma, R. K., Chaudhary, S., & Jain, A. (2020). Assessment of mechanical and durability properties of concrete containing PET waste. Scientia Iranica, 27(1), 1–9. doi:10.24200/sci.2018.20334.

Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research and Technology, 9(3), 4631–4643. doi:10.1016/j.jmrt.2020.02.090.

Campanhão, A. F., Marvila, M. T., de Azevedo, A. R. G., da Silva, T. R., Fediuk, R., & Vatin, N. (2022). Recycled pet sand for cementitious mortar. Materials, 15(1), 273. doi:10.3390/ma15010273.

Kozul, R., & Darwin, D. (1997). Effects of Aggregate Type, Size and Content on Concrete Strength and Fracture Energy. SM Report No. 43, University of Kansas Center for Research, Kansas, United States.

Guendouz, M., Debieb, F., Boukendakdji, O., Kadri, E. H., Bentchikou, M., & Soualhi, H. (2016). Use of plastic waste in sand concrete. Journal of Materials and Environmental Science, 7(2), 382–389.

Pereira De Oliveira, L. A., & Castro-Gomes, J. P. (2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction and Building Materials, 25(4), 1712–1717. doi:10.1016/j.conbuildmat.2010.11.044.

Ochi, T., Okubo, S., & Fukui, K. (2007). Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29(6), 448–455. doi:10.1016/j.cemconcomp.2007.02.002.

Chowdhury, S., Maniar, A. T., & Suganya, O. (2013). Polyethylene Terephthalate (PET) Waste as Building Solution. International Journal of Chemical, Environmental & Biological Sciences, 1(5), 2320–4087.

Tang, R., Wei, Q., Zhang, K., Jiang, S., Shen, Z., Zhang, Y., & Chow, C. W. K. (2022). Preparation and performance analysis of recycled PET fiber reinforced recycled foamed concrete. Journal of Building Engineering, 57, 104948. doi:10.1016/j.jobe.2022.104948.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-020


  • There are currently no refbacks.

Copyright (c) 2024 Mohammad Nadeem Akhtar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.