Integrating Technology and Heritage Design for Climate Resilient Courtyard House in Arid Region
Downloads
Doi: 10.28991/CEJ-2024-010-03-018
Full Text: PDF
Downloads
[2] Azarbayjani, M., & Thaddeus, D. J. (2022). High Comfort – Low Impact: Integration of Thermal Mass in Pursuit of Designing Sustainable Buildings. Achieving Building Comfort by Natural Means, Springer, Chem, Switzerland. doi:10.1007/978-3-031-04714-5_3.
[3] Sharaf, F. (2020). The impact of thermal mass on building energy consumption: A case study in Al Mafraq city in Jordan. Cogent Engineering, 7(1), 1804092. doi:10.1080/23311916.2020.1804092.
[4] Baiz, W. H., & Fathulla, S. J. (2017). Urban Courtyard Housing Form as a Response to Human Need, Culture and Environment in Hot Climate Regions: Baghdad as a Case Study. International Journal of Engineering Research and Applications, 6(9), 10–19. doi:10.9790/9622-0609011019.
[5] Amiriparyan, P., & Kiani, Z. (2016). Analyzing the homogenous nature of central courtyard structure in formation of Iranian traditional houses. Procedia-social and behavioral sciences, 216, 905-915. doi:10.1016/j.sbspro.2015.12.087.
[6] Cantón, M. A., Ganem, C., Barea, G., & Llano, J. F. (2014). Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building. Renewable Energy, 69, 437–446. doi:10.1016/j.renene.2014.03.065.
[7] Yang, L., Fu, R., He, W., He, Q., & Liu, Y. (2020). Adaptive thermal comfort and climate responsive building design strategies in dry–hot and dry–cold areas: Case study in Turpan, China. Energy and Buildings, 209, 109678. doi:10.1016/j.enbuild.2019.109678.
[8] Xu, C., Li, S., Zhang, X., & Shao, S. (2018). Thermal comfort and thermal adaptive behaviours in traditional dwellings: A case study in Nanjing, China. Building and Environment, 142, 153–170. doi:10.1016/j.buildenv.2018.06.006.
[9] Soflaei, F., Shokouhian, M., & Mofidi Shemirani, S. M. (2016). Traditional Iranian courtyards as microclimate modifiers by considering orientation, dimensions, and proportions. Frontiers of Architectural Research, 5(2), 225–238. doi:10.1016/j.foar.2016.02.002.
[10] Sun, Q., Fan, Z., & Bai, L. (2024). Influence of space properties of enclosed patio on thermal performance in hot-humid areas of China. Ain Shams Engineering Journal, 15(2), 102370. doi:10.1016/j.asej.2023.102370.
[11] Soflaei, F., Shokouhian, M., Abraveshdar, H., & Alipour, A. (2017). The impact of courtyard design variants on shading performance in hot- arid climates of Iran. Energy and Buildings, 143, 71–83. doi:10.1016/j.enbuild.2017.03.027.
[12] Benoudjafer, I. (2022). When social practices produce space and create passive cooling systems in hot arid region. Technium Social Sciences Journal, 27, 932–944. doi:10.47577/tssj.v27i1.5316.
[13] Nguyen, A. T., & Reiter, S. (2014). A climate analysis tool for passive heating and cooling strategies in hot humid climate based on Typical Meteorological Year data sets. Energy and Buildings, 68, 756–763. doi:10.1016/j.enbuild.2012.08.050.
[14] Kamal, R., & Rahman, M. S. (2018). A study on feasibility of super adobe technology -an energy efficient building system using natural resources in Bangladesh. IOP Conference Series: Earth and Environmental Science, 143, 12043. doi:10.1088/1755-1315/143/1/012043.
[15] Dabaieh, M., & Eybye, B. T. (2016). A comparative study of human aspects in acclimatization of adobe vernacular architecture: A case from Denmark and Egypt. A/Z ITU Journal of the Faculty of Architecture, 13(1), 29–41. doi:10.5505/itujfa.2016.09709.
[16] Taleghani, M., Tenpierik, M., & van den Dobbelsteen, A. (2014). Introduction into courtyard buildings in different climates. A+ BE| Architecture and the Built Environment, 4(18), 53-86.
[17] Vellinga, M. (2014). Vernacular architecture and sustainability: Two or three lessons. Vernacular Architecture: Towards a Sustainable Future, CRC Press, Boca Raton, United States.
[18] Al-Hafith, O., Satish, B. K., Bradbury, S., & Wilde, P. De. (2017). Simulation of courtyard spaces in a desert climate. Energy Procedia, 142, 1997–2002. doi:10.1016/j.egypro.2017.12.401.
[19] Abdulkareem, H. A. (2016). Thermal Comfort through the Microclimates of the Courtyard. A Critical Review of the Middle-eastern Courtyard House as a Climatic Response. Procedia-Social and Behavioral Sciences, 216, 662–674. doi:10.1016/j.sbspro.2015.12.054.
[20] Saadatjoo, P., Badamchizadeh, P., & Mahdavinejad, M. (2023). Towards the new generation of courtyard buildings as a healthy living concept for post-pandemic era. Sustainable Cities and Society, 97, 104726. doi:10.1016/j.scs.2023.104726.
[21] Han, J., Li, X., Li, B., Yang, W., Yin, W., Peng, Y., & Feng, T. (2023). Research on the influence of courtyard space layout on building microclimate and its optimal design. Energy and Buildings, 289, 113035. doi:10.1016/j.enbuild.2023.113035.
[22] Ibrahim, Y., Kershaw, T., Shepherd, P., & Elkady, H. (2022). Multi-objective optimisation of urban courtyard blocks in hot arid zones. Solar Energy, 240, 104–120. doi:10.1016/j.solener.2022.05.024.
[23] Guedouh, M. S., Zemmouri, N., Hanafi, A., & Qaoud, R. (2019). Passive strategy based on courtyard building morphology impact on thermal and luminous environments in hot and arid region. Energy Procedia, 157, 435–442. doi:10.1016/j.egypro.2018.11.208.
[24] Pilechiha, P., Norouziasas, A., Ghorbani Naeini, H., & Jolma, K. (2022). Evaluation of occupant's adaptive thermal comfort behaviour in naturally ventilated courtyard houses. Smart and Sustainable Built Environment, 11(4), 793–811. doi:10.1108/SASBE-02-2021-0020.
[25] Al-Hafith, O., BK, S., & de Wilde, P. (2023). Assessing annual thermal comfort extent in central courtyards: Baghdad as a case study. Smart and Sustainable Built Environment, 12(3), 660–681. doi:10.1108/SASBE-09-2021-0154.
[26] Taleb, H. M., & Abumoeilak, L. (2021). An assessment of different courtyard configurations in urban communities in the United Arab Emirates (UAE). Smart and Sustainable Built Environment, 10(1), 67–89. doi:10.1108/SASBE-08-2019-0116.
[27] Sahebzadeh, S., Dalvand, Z., Sadeghfar, M., & Heidari, A. (2020). Vernacular architecture of Iran's hot regions; elements and strategies for a comfortable living environment. Smart and Sustainable Built Environment, 9(4), 573–593. doi:10.1108/SASBE-11-2017-0065.
[28] Gunasagaran, S., Saw, E. S., Mari, T. S., Srirangam, S., & Ng, V. (2023). Courtyard configuration to optimize shading, daylight and ventilation in a tropical terrace house using simulation. International Journal of Architectural Research: Archnet-IJAR, 17(1), 109–123. doi:10.1108/ARCH-12-2021-0354.
[29] Alharbi, F. R., & Csala, D. (2021). Gulf cooperation council countries' climate change mitigation challenges and exploration of solar and wind energy resource potential. Applied Sciences, 11(6), 2648. doi:10.3390/app11062648.
[30] Mahmood, H., & Furqan, M. (2021). Oil rents and greenhouse gas emissions: spatial analysis of Gulf Cooperation Council countries. Environment, Development and Sustainability, 23(4), 6215–6233. doi:10.1007/s10668-020-00869-w.
[31] Mahmood, H., Asadov, A., Tanveer, M., Furqan, M., & Yu, Z. (2022). Impact of Oil Price, Economic Growth and Urbanization on CO2 Emissions in GCC Countries: Asymmetry Analysis. Sustainability, 14(8), 4562. doi:10.3390/su14084562.
[32] Abumoghli, I., & Goncalves, A. (2020). Environmental challenges in the MENA region. UN Environmental Program, United Nations, Nairobi, Kenya.
[33] Abulibdeh, A., Zaidan, E., & Al-Saidi, M. (2019). Development drivers of the water-energy-food nexus in the Gulf Cooperation Council region. Development in Practice, 29(5), 582–593. doi:10.1080/09614524.2019.1602109.
[34] Abdmouleh, Z., Alammari, R. A. M., & Gastli, A. (2015). Recommendations on renewable energy policies for the GCC countries. Renewable and Sustainable Energy Reviews, 50, 1181–1191. doi:10.1016/j.rser.2015.05.057.
[35] Romero, P., Navarro, J. M., & Ordaz, P. B. (2022). Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update. Agricultural Water Management, 259, 107216. doi:10.1016/j.agwat.2021.107216.
[36] Elrahmani, A., Hannun, J., Eljack, F., & Kazi, M. K. (2021). Status of renewable energy in the GCC region and future opportunities. Current Opinion in Chemical Engineering, 31, 100664. doi:10.1016/j.coche.2020.100664.
[37] Mendez, C., Contestabile, M., & Bicer, Y. (2023). Hydrogen fuel cell vehicles as a sustainable transportation solution in Qatar and the Gulf cooperation council: a review. International Journal of Hydrogen Energy, 48(99), 38953–38975. doi:10.1016/j.ijhydene.2023.04.194.
[38] Abubakar, I. R., & Alshammari, M. S. (2023). Urban planning schemes for developing low-carbon cities in the Gulf Cooperation Council region. Habitat International, 138, 102881. doi:10.1016/j.habitatint.2023.102881.
[39] Ibrahim, I. (2019). Eco-traditional courtyard houses in UAE: A case study of the Sharjah museums. WIT Transactions on the Built Environment, 183, 15–24. doi:10.2495/ARC180021.
[40] Zamani, Z., Heidari, S., & Hanachi, P. (2018). Reviewing the thermal and microclimatic function of courtyards. Renewable and Sustainable Energy Reviews, 93, 580–595. doi:10.1016/j.rser.2018.05.055.
[41] He, B. J. (2019). Towards the next generation of green building for urban heat island mitigation: Zero UHI impact building. Sustainable Cities and Society, 50, 101647. doi:10.1016/j.scs.2019.101647.
[42] Mohora, I., & Anghel, A. A. (2019). Revitalization Proposals for Green Interior Courtyards in the Historical Centre of Timisoara. IOP Conference Series: Materials Science and Engineering, 471, 82027. doi:10.1088/1757-899X/471/8/082027.
[43] Gupta, R., & Joshi, M. (2021). Courtyard: A look at the relevance of courtyard space in contemporary houses. Civil Engineering and Architecture, 9(7), 2261–2272. doi:10.13189/cea.2021.090713.
[44] Fernandes, J., Mateus, R., Bragança, L., & Correia Da Silva, J. J. (2015). Portuguese vernacular architecture: The contribution of vernacular materials and design approaches for sustainable construction. Architectural Science Review, 58(4), 324–336. doi:10.1080/00038628.2014.974019.
[45] El-Shorbagy, A. (2010). Traditional Islamic-Arab House: Vocabulary and Syntax. International Journal of Civil & Environmental Engineering, 10(4), 15–20.
[46] Alabid, J., & Taki, A. (2017). Optimising residential courtyard in terms of social and environmental performance for Ghadames Housing, Libya. Proceedings of 33rd PLEA International Conference: Design to Thrive, PLEA 2017, 2-5 July, 2017, Edinburgh, Scotland.
[47] Liu, Y. Q., Wang, A. L., Hou, J., Chen, X. Y., & Xia, J. S. (2020). Comprehensive evaluation of rural courtyard utilization efficiency: A case study in Shandong Province, Eastern China. Journal of Mountain Science, 17(9), 2280-2295. doi:10.1007/s11629-019-5824-x.
[48] Friess, W. A., & Rakhshan, K. (2017). A review of passive envelope measures for improved building energy efficiency in the UAE. Renewable and Sustainable Energy Reviews, 72, 485–496. doi:10.1016/j.rser.2017.01.026.
[49] Ozarisoy, B., & Altan, H. (2021). Systematic literature review of bioclimatic design elements: Theories, methodologies and cases in the South-eastern Mediterranean climate. Energy and Buildings, 250, 111281. doi:10.1016/j.enbuild.2021.111281.
[50] Al-Kodmany, K. (1999). Residential visual privacy: Traditional and modern architecture and urban design. Journal of Urban Design, 4(3), 283–311. doi:10.1080/13574809908724452.
[51] Bekleyen, A., & Dalkiliç, N. (2011). The influence of climate and privacy on indigenous courtyard houses in Diyarbakır, Turkey. Scientific Research and Essays, 6(4), 908–922.
[52] Wang, Y. P., Wang, Y., & Wu, J. (2009). Urbanization and informal development in China: Urban villages in Shenzhen. International Journal of Urban and Regional Research, 33(4), 957–973. doi:10.1111/j.1468-2427.2009.00891.x.
[53] Foruzanmehr, A., & Vellinga, M. (2011). Vernacular architecture: Questions of comfort and practicability. Building Research and Information, 39(3), 274–285. doi:10.1080/09613218.2011.562368.
[54] Zhang, Y., & Barrett, P. (2012). Factors influencing occupants' blind-control behaviour in a naturally ventilated office building. Building and Environment, 54, 137–147. doi:10.1016/j.buildenv.2012.02.016.
[55] Shi, Z., Qian, H., Zheng, X., Lv, Z., Li, Y., Liu, L., & Nielsen, P. V. (2018). Seasonal variation of window opening behaviors in two naturally ventilated hospital wards. Building and Environment, 130, 85–93. doi:10.1016/j.buildenv.2017.12.019.
[56] Al Surf, M., Susilawati, C., & Trigunarsyah, B. (2012). Analyzing the literature for the link between the conservative Islamic culture of Saudi Arabia and the design of sustainable housing. Proceedings of 2nd International Conference Socio-Political and Technological Dimensions of Climate Change, 19-21 November, 2012, Selangor, Malaysia.
[57] Ghaffarianhoseini, A., Berardi, U., & Ghaffarianhoseini, A. (2015). Thermal performance characteristics of unshaded courtyards in hot and humid climates. Building and Environment, 87, 154–168. doi:10.1016/j.buildenv.2015.02.001.
[58] Markus, B. (2016). A review on courtyard design criteria in different climatic zones. African Research Review, 10(5), 181. doi:10.4314/afrrev.v10i5.13.
[59] Nasrollahi, N., Hatami, M., Khastar, S. R., & Taleghani, M. (2017). Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate. Sustainable Cities and Society, 35, 449–467. doi:10.1016/j.scs.2017.08.017.
[60] Wang, F., & Liu, Y. (2002). Thermal environment of the courtyard style cave dwelling in winter. Energy and Buildings, 34(10), 985–1001. doi:10.1016/S0378-7788(01)00145-1.
[61] Soflaei, F., Shokouhian, M., & Zhu, W. (2017). Socio-environmental sustainability in traditional courtyard houses of Iran and China. Renewable and Sustainable Energy Reviews, 69, 1147–1169. doi:10.1016/j.rser.2016.09.130.
[62] Zhu, J., Feng, J., Lu, J., Chen, Y., Li, W., Lian, P., & Zhao, X. (2023). A review of the influence of courtyard geometry and orientation on microclimate. Building and Environment, 236. doi:10.1016/j.buildenv.2023.110269.
[63] Abu-Ghazzeh, T. M. (1999). Housing layout, social interaction, and the place of contact in Abu-Nuseir, Jordan. Journal of Environmental Psychology, 19(1), 41–73. doi:10.1006/jevp.1998.0106.
[64] Luo, X., & Huang, J. (2022). The Exploration of New Courtyard Architecture Based on the Guidance of Architectural Culture and Technology. Advances in Civil Engineering, 2022, 1-12. doi:10.1155/2022/5029647.
[65] Hyde, R. (Ed.). (2012). Bioclimatic Housing. Routledge, London, United Kingdom. doi:10.4324/9781849770569.
[66] Al-Sallal, K. A., Al-Rais, L., & Dalmouk, M. Bin. (2013). Designing a sustainable house in the desert of Abu Dhabi. Renewable Energy, 49, 80–84. doi:10.1016/j.renene.2012.01.061.
[67] Zhao, M., Mehra, S. R., & Künzel, H. M. (2022). Energy-saving potential of deeply retrofitting building enclosures of traditional courtyard houses – A case study in the Chinese Hot-Summer-Cold-Winter zone. Building and Environment, 217, 109106. doi:10.1016/j.buildenv.2022.109106.
[68] Alrashed, F., Asif, M., & Burek, S. (2017). The role of vernacular construction techniques and materials for developing zero-energy homes in various desert climates. Buildings, 7(1), 17. doi:10.3390/buildings7010017.
[69] Konya, A. (2013). Design primer for hot climates. Elsevier, Amsterdam, Netherlands.
[70] Agha, R. H. M. (2022). The possible application of intelligent systems in traditional courtyard houses in Iraq. Applied Engineering and Technology, 1(1), 11–23. doi:10.31763/aet.v1i1.666.
[71] Chandel, S. S., Sharma, V., & Marwah, B. M. (2016). Review of energy efficient features in vernacular architecture for improving indoor thermal comfort conditions. Renewable and Sustainable Energy Reviews, 65, 459–477. doi:10.1016/j.rser.2016.07.038.
[72] Pardo, J. M. F. (2023). Challenges and Current Research Trends for Vernacular Architecture in a Global World: A Literature Review. Buildings, 13(1), 162. doi:10.3390/buildings13010162.
[73] Saadatian, O., Sopian, K., Salleh, E., Lim, C. H., Riffat, S., Saadatian, E., Toudeshki, A., & Sulaiman, M. Y. (2013). A review of energy aspects of green roofs. Renewable and Sustainable Energy Reviews, 23, 155–168. doi:10.1016/j.rser.2013.02.022.
[74] Ragheb, A., El-Shimy, H., & Ragheb, G. (2016). Green Architecture: A Concept of Sustainability. Procedia - Social and Behavioral Sciences, 216, 778–787. doi:10.1016/j.sbspro.2015.12.075.
[75] Perera, A. T. D., Javanroodi, K., & Nik, V. M. (2021). Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology. Applied Energy, 285, 116430. doi:10.1016/j.apenergy.2020.116430.
[76] Du, X., Bokel, R., & van den Dobbelsteen, A. (2014). Building microclimate and summer thermal comfort in free-running buildings with diverse spaces: A Chinese vernacular house case. Building and Environment, 82, 215–227. doi:10.1016/j.buildenv.2014.08.022.
[77] Subramanian, C., Ramachandran, N., & Kumar, S. S. (2016). Comparative Investigation of Traditional, Modern and designed Solar Passive Building for thermal comfort in Thanjavur region. International Journal of Innovations in Engineering and Technology, 7(2), 283–291.
[78] Manioǧlu, G., & Yilmaz, Z. (2008). Energy efficient design strategies in the hot dry area of Turkey. Building and Environment, 43(7), 1301–1309. doi:10.1016/j.buildenv.2007.03.014.
[79] Cabeza, L. F., de Gracia, A., & Pisello, A. L. (2018). Integration of renewable technologies in historical and heritage buildings: A review. Energy and Buildings, 177, 96–111. doi:10.1016/j.enbuild.2018.07.058.
[80] Molua, E. L. (2009). Accommodation of climate change in coastal areas of Cameroon: Selection of household-level protection options. Mitigation and Adaptation Strategies for Global Change, 14(8), 721–735. doi:10.1007/s11027-009-9194-5.
[81] Prosun, P. (2011). The LIFT House: An amphibious strategy for sustainable and affordable housing for the urban poor in flood-prone Bangladesh. Master Thesis, University of Waterloo, Waterloo, Canada.
[82] SCTDA. (2024). Majlis Al Midfa. A square with a one-of-a-kind wind tower in the whole of UAE, Relive past gatherings in a historic square with a unique landmark. Sharjah Commerce & Tourism Development Authority (SCTDA), Sharjah, United Arab Emirates. Available online: https://www.visitsharjah.com/activities/heritage/majlis-al-midfa/ (accessed on February 2024).
[83] Google Map. (2023). Location of Majlis Al Midfa Building, Sharjah, United Arab Emirates. Available online: https://maps.app.goo.gl/CxFa2BoNMgjoV2KN9 (accessed on February 2024).
[84] Anderson, G. (1991). Sharjah, UAE: the urban conservative dilemma. Master Thesis, Durham University, Durham, United Kingdom.
[85] Kazimee, B. A. (2012). Heritage and sustainability in the Islamic built environment. Wit Press, Billerica, United States.
[86] Golubchikov, O., & Badyina, a. (2012). Sustainable housing for sustainable cities: a policy framework for developing countries, UN-HABITAT, Nairobi, Kenya.
[87] Correia, M., Dipasquale, L., & Mecca, S. (2010). Versus: heritage for tomorrow. Vernacular knowledge for sustainable architecture. Firenze University Press, Firenze, Italy. doi:10.36253/978-88-6655-742-5.
[88] Ly, P., Birkeland, J., & Demirbilek, N. (2010). Applying environmentally responsive characteristics of vernacular architecture to sustainable housing in Vietnam. Sustainable Architecture & Urban Development, 4, 287-306.
[89] Aldersoni, A., Albaker, A., Alturki, M., & Said, M. A. (2022). The Impact of Passive Strategies on the Overall Energy Performance of Traditional Houses in the Kingdom of Saudi Arabia. Buildings, 12(11). doi:10.3390/buildings12111837.
[90] Guedes, M. C. (2013). Sustainable Architecture in Africa. Sustainability, Energy and Architecture, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-397269-9.00016-5.
[91] Pisello, A. L., Paolini, R., Diamanti, M. V., Fortunati, E., Castaldo, V. L., & Torre, L. (2016). Nanotech-based cool materials for building energy efficiency. Nano and Biotech Based Materials for Energy Building Efficiency, Springer, Cham, Switzerland. doi:10.1007/978-3-319-27505-5_9.
[92] Gharahshir, M. (2019). Implementation of sustainable architecture patterns in hot and dry regions of Iran by investigating on vernacular sustainable architecture patterns. Master Thesis, University of Applied Sciences, Erfurt, Germany.
[93] Badr, S. (2014). Towards Low Energy Buildings through Vernacular Architecture of Arab Cities. Alexandria University, Alexandria, Egypt.
[94] Chohan, A. H., & Awad, J. (2022). Wind Catchers: An Element of Passive Ventilation in Hot, Arid and Humid Regions, a Comparative Analysis of Their Design and Function. Sustainability, 14(17), 11088. doi:10.3390/su141711088.
[95] Varela-Boydo, C. A., Moya, S. L., & Watkins, R. (2021). Analysis of traditional windcatchers and the effects produced by changing the size, shape, and position of the outlet opening. Journal of Building Engineering, 33, 101828. doi:10.1016/j.jobe.2020.101828.
[96] Mauree, D., Naboni, E., Coccolo, S., Perera, A. T. D., Nik, V. M., & Scartezzini, J. L. (2019). A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, 112, 733–746. doi:10.1016/j.rser.2019.06.005.
[97] Jalaei, F., & Jrade, A. (2015). Integrating building information modeling (BIM) and LEED system at the conceptual design stage of sustainable buildings. Sustainable Cities and Society, 18, 95–107. doi:10.1016/j.scs.2015.06.007.
[98] He, Y., Kwok, K., Mason, M., & Douglas, G. (2013). How should future building structure and emergency response cope with bushfire attacks? Australasia Fire Authority Council. Conference, 2–5 September, 2013, Melbourne, Australia.
[99] Charron, R., & Athienitis, A. (2006). Design and optimization of net zero energy solar homes. ASHRAE Transactions, 112(2), 285–295.
[100] Athienitis, A. K., & O'Brien, W. (2015). Modeling, design, and optimization of net-zero energy buildings. Ernst & Sohn, Berlin, Germany. doi:10.1002/9783433604625.
[101] Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. doi:10.1080/23311916.2016.1167990.
[102] Heidari, A., Taghipour, M., & Yarmahmoodi, Z. (2021). The effect of fixed external shading devices on daylighting and thermal comfort in residential building. Journal of Daylighting, 8(2), 165–180. doi:10.15627/JD.2021.15.
[103] Roetzel, A., & Tsangrassoulis, A. (2012). Impact of climate change on comfort and energy performance in offices. Building and environment, 57, 349-361. doi:10.1016/j.buildenv.2012.06.002.
[104] Lomas, K. J. (1996). The U.K. Applicability Study: An Evaluation of Thermal Simulation Programs for Passive Solar House Design. Building and Environment, 31(3), 197–206. doi:10.1016/0360-1323(95)00050-X.
[105] Nutkiewicz, A., Jain, R. K., & Bardhan, R. (2018). Energy modeling of urban informal settlement redevelopment: Exploring design parameters for optimal thermal comfort in Dharavi, Mumbai, India. Applied Energy, 231, 433–445. doi:10.1016/j.apenergy.2018.09.002.
[106] Shimoda, Y., Sugiyama, M., Nishimoto, R., & Momonoki, T. (2021). Evaluating decarbonization scenarios and energy management requirement for the residential sector in Japan through bottom-up simulations of energy end-use demand in 2050. Applied Energy, 303, 117510. doi:10.1016/j.apenergy.2021.117510.
[107] Bajic, V. (2022). Typical wall construction thermal properties. Sefaira, London, United Kingdom. Available online: https://support.sefaira.com/hc/en-us/articles/4416428261649 (accessed on February 2024).
[108] Bajic, V. (2022). Typical roof construction thermal properties. Sefaira, London, United Kingdom. Available online: https://support.sefaira.com/hc/en-us/articles/4416435350417 (accessed on February 2024).
[109] Lutheran, A. (2022). Default HVAC Systems for new projects. Sefaira, London, United Kingdom. Available online: https://support.sefaira.com/hc/en-us/articles/206249303-Default-HVAC-Systems-for-new-projects (accessed on June 2023).
[110] Corney, A. (2015). Design Loads & Outside Air in the Space Use Tab Explained. Sefaira, London, United Kingdom. Available online: https://support.sefaira.com/hc/en-us/articles/204380595-Design-Loads-Outside-Air-in-the-Space-Use-Tab-Explained (accessed on February 2024).
[111] Federal Competitiveness and Statistics Centre. (2019). Electricity 2019. Federal Competitiveness and Statistics Centre, Dubai, UAE. Available online: https://datasource.kapsarc.org/explore/dataset/electricity-tariff-by-authority-slab-consumption-and-sector/table/?disjunctive.authority&disjunctive.sector&disjunctive.consumption_slab&disjunctive.nationality&sort=authority (accessed on February 2024).
[112] SolarFeeds. (2023). Solar Power Statistics in United Arab Emirates 2021. SolarFeeds, Ontario, United States. Available online: https://www.solarfeeds.com/mag/solar-power-statistics-in-uae-2021/ (accessed on February 2024).
[113] Photovoltaic Solar Energy. (2023). Dimensions of photovoltaic panels: how to choose them correctly? Available online: https://photovoltaicsolarenergy.org/dimensions-of-photovoltaic-panels-how-to-choose-them-correctly/ (accessed on May 2023).
[114] SEWA. (2023). The Declaration of Sharjah City of Conservation. Sharjah Electricity and Water Authority (SEWA), Sharjah, UAE. Available online: https://www.sewa.gov.ae/en/content.aspx?P=4JVpzOgumWxxDeo5mu1mhQ%3D%3D (accessed on February 2024).
[115] Poudel, N. (2022). Section 4: An Introduction to Sefaira Daylighting Visualization. Sefaira, London, UK. Available online: https://support.sefaira.com/hc/en-us/articles/360001328352-Section-4-An-Introduction-to-Sefaira-Daylighting-Visualization (accessed on February 2024).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.