Integrating Technology and Heritage Design for Climate Resilient Courtyard House in Arid Region

Afaq H. Chohan, Jihad Awad, Muhammad A. Ismail, Mohammad S. Arar

Abstract


This research has investigated the sustainability and climate resilience of courtyard houses of adobe architecture in the UAE. It analyzed design effectiveness in terms of power consumption, CO2 emissions, thermal comfort, and daylight use, employing simulations to assess building structures and construction systems. Adopting a three-phase mixed-methods approach, the study began with a literature review on courtyard house design, construction, and environmental performance, emphasizing sustainable design and passive ventilation. The second phase involved a case study of a UAE courtyard house (Al Midfa), including site visits, interviews, and energy consumption and CO2 emission data collection. The final phase used building energy simulation software to model energy performance and evaluate passive ventilation's role in reducing energy consumption and CO2 emissions, with simulation results validated against real-world data. Advanced Sefaira simulations with the Energy Plus Engine identified one out of seven modified models (M5) as exceptionally thermally efficient, influencing the architectural design of the Al Midfa house. To transform the Al Midfa house into a sustainable climate-resistant structure, the research suggested retrofitting with new glazing and insulation on the inside of external walls and on the roof surface at a combined U-value of 0.4 W/m2to enhance energy efficiency without altering the exterior. A notable innovation was the use of injected cellulose insulation in wall systems, combining efficient insulation with architectural aesthetics, signifying a shift towards energy-efficient interior modifications. The study's findings contribute to the evolution of traditional house designs toward climate change resilience and a sustainable future.

 

Doi: 10.28991/CEJ-2024-010-03-018

Full Text: PDF


Keywords


Adobe Architecture; CO2 Emission; Energy Consumption; Thermal Condition; Traditional Construction; Courtyard House in Hot & Dry Climate.

References


Chohan, A. H., Awad, J., Ani, A. I. C. H. E., & Sher, B. K. (2023). Challenges of climate change & resilient housing design solution. Sustainable Energy Technologies: Proceedings of the 20th International Conference on Sustainable Energy Technologies, 15–17 August, 2023, Nottingham, United Kingdom.

Azarbayjani, M., & Thaddeus, D. J. (2022). High Comfort – Low Impact: Integration of Thermal Mass in Pursuit of Designing Sustainable Buildings. Achieving Building Comfort by Natural Means, Springer, Chem, Switzerland. doi:10.1007/978-3-031-04714-5_3.

Sharaf, F. (2020). The impact of thermal mass on building energy consumption: A case study in Al Mafraq city in Jordan. Cogent Engineering, 7(1), 1804092. doi:10.1080/23311916.2020.1804092.

Baiz, W. H., & Fathulla, S. J. (2017). Urban Courtyard Housing Form as a Response to Human Need, Culture and Environment in Hot Climate Regions: Baghdad as a Case Study. International Journal of Engineering Research and Applications, 6(9), 10–19. doi:10.9790/9622-0609011019.

Amiriparyan, P., & Kiani, Z. (2016). Analyzing the homogenous nature of central courtyard structure in formation of Iranian traditional houses. Procedia-social and behavioral sciences, 216, 905-915. doi:10.1016/j.sbspro.2015.12.087.

Cantón, M. A., Ganem, C., Barea, G., & Llano, J. F. (2014). Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building. Renewable Energy, 69, 437–446. doi:10.1016/j.renene.2014.03.065.

Yang, L., Fu, R., He, W., He, Q., & Liu, Y. (2020). Adaptive thermal comfort and climate responsive building design strategies in dry–hot and dry–cold areas: Case study in Turpan, China. Energy and Buildings, 209, 109678. doi:10.1016/j.enbuild.2019.109678.

Xu, C., Li, S., Zhang, X., & Shao, S. (2018). Thermal comfort and thermal adaptive behaviours in traditional dwellings: A case study in Nanjing, China. Building and Environment, 142, 153–170. doi:10.1016/j.buildenv.2018.06.006.

Soflaei, F., Shokouhian, M., & Mofidi Shemirani, S. M. (2016). Traditional Iranian courtyards as microclimate modifiers by considering orientation, dimensions, and proportions. Frontiers of Architectural Research, 5(2), 225–238. doi:10.1016/j.foar.2016.02.002.

Sun, Q., Fan, Z., & Bai, L. (2024). Influence of space properties of enclosed patio on thermal performance in hot-humid areas of China. Ain Shams Engineering Journal, 15(2), 102370. doi:10.1016/j.asej.2023.102370.

Soflaei, F., Shokouhian, M., Abraveshdar, H., & Alipour, A. (2017). The impact of courtyard design variants on shading performance in hot- arid climates of Iran. Energy and Buildings, 143, 71–83. doi:10.1016/j.enbuild.2017.03.027.

Benoudjafer, I. (2022). When social practices produce space and create passive cooling systems in hot arid region. Technium Social Sciences Journal, 27, 932–944. doi:10.47577/tssj.v27i1.5316.

Nguyen, A. T., & Reiter, S. (2014). A climate analysis tool for passive heating and cooling strategies in hot humid climate based on Typical Meteorological Year data sets. Energy and Buildings, 68, 756–763. doi:10.1016/j.enbuild.2012.08.050.

Kamal, R., & Rahman, M. S. (2018). A study on feasibility of super adobe technology -an energy efficient building system using natural resources in Bangladesh. IOP Conference Series: Earth and Environmental Science, 143, 12043. doi:10.1088/1755-1315/143/1/012043.

Dabaieh, M., & Eybye, B. T. (2016). A comparative study of human aspects in acclimatization of adobe vernacular architecture: A case from Denmark and Egypt. A/Z ITU Journal of the Faculty of Architecture, 13(1), 29–41. doi:10.5505/itujfa.2016.09709.

Taleghani, M., Tenpierik, M., & van den Dobbelsteen, A. (2014). Introduction into courtyard buildings in different climates. A+ BE| Architecture and the Built Environment, 4(18), 53-86.

Vellinga, M. (2014). Vernacular architecture and sustainability: Two or three lessons. Vernacular Architecture: Towards a Sustainable Future, CRC Press, Boca Raton, United States.

Al-Hafith, O., Satish, B. K., Bradbury, S., & Wilde, P. De. (2017). Simulation of courtyard spaces in a desert climate. Energy Procedia, 142, 1997–2002. doi:10.1016/j.egypro.2017.12.401.

Abdulkareem, H. A. (2016). Thermal Comfort through the Microclimates of the Courtyard. A Critical Review of the Middle-eastern Courtyard House as a Climatic Response. Procedia-Social and Behavioral Sciences, 216, 662–674. doi:10.1016/j.sbspro.2015.12.054.

Saadatjoo, P., Badamchizadeh, P., & Mahdavinejad, M. (2023). Towards the new generation of courtyard buildings as a healthy living concept for post-pandemic era. Sustainable Cities and Society, 97, 104726. doi:10.1016/j.scs.2023.104726.

Han, J., Li, X., Li, B., Yang, W., Yin, W., Peng, Y., & Feng, T. (2023). Research on the influence of courtyard space layout on building microclimate and its optimal design. Energy and Buildings, 289, 113035. doi:10.1016/j.enbuild.2023.113035.

Ibrahim, Y., Kershaw, T., Shepherd, P., & Elkady, H. (2022). Multi-objective optimisation of urban courtyard blocks in hot arid zones. Solar Energy, 240, 104–120. doi:10.1016/j.solener.2022.05.024.

Guedouh, M. S., Zemmouri, N., Hanafi, A., & Qaoud, R. (2019). Passive strategy based on courtyard building morphology impact on thermal and luminous environments in hot and arid region. Energy Procedia, 157, 435–442. doi:10.1016/j.egypro.2018.11.208.

Pilechiha, P., Norouziasas, A., Ghorbani Naeini, H., & Jolma, K. (2022). Evaluation of occupant’s adaptive thermal comfort behaviour in naturally ventilated courtyard houses. Smart and Sustainable Built Environment, 11(4), 793–811. doi:10.1108/SASBE-02-2021-0020.

Al-Hafith, O., BK, S., & de Wilde, P. (2023). Assessing annual thermal comfort extent in central courtyards: Baghdad as a case study. Smart and Sustainable Built Environment, 12(3), 660–681. doi:10.1108/SASBE-09-2021-0154.

Taleb, H. M., & Abumoeilak, L. (2021). An assessment of different courtyard configurations in urban communities in the United Arab Emirates (UAE). Smart and Sustainable Built Environment, 10(1), 67–89. doi:10.1108/SASBE-08-2019-0116.

Sahebzadeh, S., Dalvand, Z., Sadeghfar, M., & Heidari, A. (2020). Vernacular architecture of Iran’s hot regions; elements and strategies for a comfortable living environment. Smart and Sustainable Built Environment, 9(4), 573–593. doi:10.1108/SASBE-11-2017-0065.

Gunasagaran, S., Saw, E. S., Mari, T. S., Srirangam, S., & Ng, V. (2023). Courtyard configuration to optimize shading, daylight and ventilation in a tropical terrace house using simulation. International Journal of Architectural Research: Archnet-IJAR, 17(1), 109–123. doi:10.1108/ARCH-12-2021-0354.

Alharbi, F. R., & Csala, D. (2021). Gulf cooperation council countries’ climate change mitigation challenges and exploration of solar and wind energy resource potential. Applied Sciences, 11(6), 2648. doi:10.3390/app11062648.

Mahmood, H., & Furqan, M. (2021). Oil rents and greenhouse gas emissions: spatial analysis of Gulf Cooperation Council countries. Environment, Development and Sustainability, 23(4), 6215–6233. doi:10.1007/s10668-020-00869-w.

Mahmood, H., Asadov, A., Tanveer, M., Furqan, M., & Yu, Z. (2022). Impact of Oil Price, Economic Growth and Urbanization on CO2 Emissions in GCC Countries: Asymmetry Analysis. Sustainability, 14(8), 4562. doi:10.3390/su14084562.

Abumoghli, I., & Goncalves, A. (2020). Environmental challenges in the MENA region. UN Environmental Program, United Nations, Nairobi, Kenya.

Abulibdeh, A., Zaidan, E., & Al-Saidi, M. (2019). Development drivers of the water-energy-food nexus in the Gulf Cooperation Council region. Development in Practice, 29(5), 582–593. doi:10.1080/09614524.2019.1602109.

Abdmouleh, Z., Alammari, R. A. M., & Gastli, A. (2015). Recommendations on renewable energy policies for the GCC countries. Renewable and Sustainable Energy Reviews, 50, 1181–1191. doi:10.1016/j.rser.2015.05.057.

Romero, P., Navarro, J. M., & Ordaz, P. B. (2022). Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update. Agricultural Water Management, 259, 107216. doi:10.1016/j.agwat.2021.107216.

Elrahmani, A., Hannun, J., Eljack, F., & Kazi, M. K. (2021). Status of renewable energy in the GCC region and future opportunities. Current Opinion in Chemical Engineering, 31, 100664. doi:10.1016/j.coche.2020.100664.

Mendez, C., Contestabile, M., & Bicer, Y. (2023). Hydrogen fuel cell vehicles as a sustainable transportation solution in Qatar and the Gulf cooperation council: a review. International Journal of Hydrogen Energy, 48(99), 38953–38975. doi:10.1016/j.ijhydene.2023.04.194.

Abubakar, I. R., & Alshammari, M. S. (2023). Urban planning schemes for developing low-carbon cities in the Gulf Cooperation Council region. Habitat International, 138, 102881. doi:10.1016/j.habitatint.2023.102881.

Ibrahim, I. (2019). Eco-traditional courtyard houses in UAE: A case study of the Sharjah museums. WIT Transactions on the Built Environment, 183, 15–24. doi:10.2495/ARC180021.

Zamani, Z., Heidari, S., & Hanachi, P. (2018). Reviewing the thermal and microclimatic function of courtyards. Renewable and Sustainable Energy Reviews, 93, 580–595. doi:10.1016/j.rser.2018.05.055.

He, B. J. (2019). Towards the next generation of green building for urban heat island mitigation: Zero UHI impact building. Sustainable Cities and Society, 50, 101647. doi:10.1016/j.scs.2019.101647.

Mohora, I., & Anghel, A. A. (2019). Revitalization Proposals for Green Interior Courtyards in the Historical Centre of Timisoara. IOP Conference Series: Materials Science and Engineering, 471, 82027. doi:10.1088/1757-899X/471/8/082027.

Gupta, R., & Joshi, M. (2021). Courtyard: A look at the relevance of courtyard space in contemporary houses. Civil Engineering and Architecture, 9(7), 2261–2272. doi:10.13189/cea.2021.090713.

Fernandes, J., Mateus, R., Bragança, L., & Correia Da Silva, J. J. (2015). Portuguese vernacular architecture: The contribution of vernacular materials and design approaches for sustainable construction. Architectural Science Review, 58(4), 324–336. doi:10.1080/00038628.2014.974019.

El-Shorbagy, A. (2010). Traditional Islamic-Arab House: Vocabulary and Syntax. International Journal of Civil & Environmental Engineering, 10(4), 15–20.

Alabid, J., & Taki, A. (2017). Optimising residential courtyard in terms of social and environmental performance for Ghadames Housing, Libya. Proceedings of 33rd PLEA International Conference: Design to Thrive, PLEA 2017, 2-5 July, 2017, Edinburgh, Scotland.

Liu, Y. Q., Wang, A. L., Hou, J., Chen, X. Y., & Xia, J. S. (2020). Comprehensive evaluation of rural courtyard utilization efficiency: A case study in Shandong Province, Eastern China. Journal of Mountain Science, 17(9), 2280-2295. doi:10.1007/s11629-019-5824-x.

Friess, W. A., & Rakhshan, K. (2017). A review of passive envelope measures for improved building energy efficiency in the UAE. Renewable and Sustainable Energy Reviews, 72, 485–496. doi:10.1016/j.rser.2017.01.026.

Ozarisoy, B., & Altan, H. (2021). Systematic literature review of bioclimatic design elements: Theories, methodologies and cases in the South-eastern Mediterranean climate. Energy and Buildings, 250, 111281. doi:10.1016/j.enbuild.2021.111281.

Al-Kodmany, K. (1999). Residential visual privacy: Traditional and modern architecture and urban design. Journal of Urban Design, 4(3), 283–311. doi:10.1080/13574809908724452.

Bekleyen, A., & Dalkiliç, N. (2011). The influence of climate and privacy on indigenous courtyard houses in Diyarbakır, Turkey. Scientific Research and Essays, 6(4), 908–922.

Wang, Y. P., Wang, Y., & Wu, J. (2009). Urbanization and informal development in China: Urban villages in Shenzhen. International Journal of Urban and Regional Research, 33(4), 957–973. doi:10.1111/j.1468-2427.2009.00891.x.

Foruzanmehr, A., & Vellinga, M. (2011). Vernacular architecture: Questions of comfort and practicability. Building Research and Information, 39(3), 274–285. doi:10.1080/09613218.2011.562368.

Zhang, Y., & Barrett, P. (2012). Factors influencing occupants’ blind-control behaviour in a naturally ventilated office building. Building and Environment, 54, 137–147. doi:10.1016/j.buildenv.2012.02.016.

Shi, Z., Qian, H., Zheng, X., Lv, Z., Li, Y., Liu, L., & Nielsen, P. V. (2018). Seasonal variation of window opening behaviors in two naturally ventilated hospital wards. Building and Environment, 130, 85–93. doi:10.1016/j.buildenv.2017.12.019.

Al Surf, M., Susilawati, C., & Trigunarsyah, B. (2012). Analyzing the literature for the link between the conservative Islamic culture of Saudi Arabia and the design of sustainable housing. Proceedings of 2nd International Conference Socio-Political and Technological Dimensions of Climate Change, 19-21 November, 2012, Selangor, Malaysia.

Ghaffarianhoseini, A., Berardi, U., & Ghaffarianhoseini, A. (2015). Thermal performance characteristics of unshaded courtyards in hot and humid climates. Building and Environment, 87, 154–168. doi:10.1016/j.buildenv.2015.02.001.

Markus, B. (2016). A review on courtyard design criteria in different climatic zones. African Research Review, 10(5), 181. doi:10.4314/afrrev.v10i5.13.

Nasrollahi, N., Hatami, M., Khastar, S. R., & Taleghani, M. (2017). Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate. Sustainable Cities and Society, 35, 449–467. doi:10.1016/j.scs.2017.08.017.

Wang, F., & Liu, Y. (2002). Thermal environment of the courtyard style cave dwelling in winter. Energy and Buildings, 34(10), 985–1001. doi:10.1016/S0378-7788(01)00145-1.

Soflaei, F., Shokouhian, M., & Zhu, W. (2017). Socio-environmental sustainability in traditional courtyard houses of Iran and China. Renewable and Sustainable Energy Reviews, 69, 1147–1169. doi:10.1016/j.rser.2016.09.130.

Zhu, J., Feng, J., Lu, J., Chen, Y., Li, W., Lian, P., & Zhao, X. (2023). A review of the influence of courtyard geometry and orientation on microclimate. Building and Environment, 236. doi:10.1016/j.buildenv.2023.110269.

Abu-Ghazzeh, T. M. (1999). Housing layout, social interaction, and the place of contact in Abu-Nuseir, Jordan. Journal of Environmental Psychology, 19(1), 41–73. doi:10.1006/jevp.1998.0106.

Luo, X., & Huang, J. (2022). The Exploration of New Courtyard Architecture Based on the Guidance of Architectural Culture and Technology. Advances in Civil Engineering, 2022, 1-12. doi:10.1155/2022/5029647.

Hyde, R. (Ed.). (2012). Bioclimatic Housing. Routledge, London, United Kingdom. doi:10.4324/9781849770569.

Al-Sallal, K. A., Al-Rais, L., & Dalmouk, M. Bin. (2013). Designing a sustainable house in the desert of Abu Dhabi. Renewable Energy, 49, 80–84. doi:10.1016/j.renene.2012.01.061.

Zhao, M., Mehra, S. R., & Künzel, H. M. (2022). Energy-saving potential of deeply retrofitting building enclosures of traditional courtyard houses – A case study in the Chinese Hot-Summer-Cold-Winter zone. Building and Environment, 217, 109106. doi:10.1016/j.buildenv.2022.109106.

Alrashed, F., Asif, M., & Burek, S. (2017). The role of vernacular construction techniques and materials for developing zero-energy homes in various desert climates. Buildings, 7(1), 17. doi:10.3390/buildings7010017.

Konya, A. (2013). Design primer for hot climates. Elsevier, Amsterdam, Netherlands.

Agha, R. H. M. (2022). The possible application of intelligent systems in traditional courtyard houses in Iraq. Applied Engineering and Technology, 1(1), 11–23. doi:10.31763/aet.v1i1.666.

Chandel, S. S., Sharma, V., & Marwah, B. M. (2016). Review of energy efficient features in vernacular architecture for improving indoor thermal comfort conditions. Renewable and Sustainable Energy Reviews, 65, 459–477. doi:10.1016/j.rser.2016.07.038.

Pardo, J. M. F. (2023). Challenges and Current Research Trends for Vernacular Architecture in a Global World: A Literature Review. Buildings, 13(1), 162. doi:10.3390/buildings13010162.

Saadatian, O., Sopian, K., Salleh, E., Lim, C. H., Riffat, S., Saadatian, E., Toudeshki, A., & Sulaiman, M. Y. (2013). A review of energy aspects of green roofs. Renewable and Sustainable Energy Reviews, 23, 155–168. doi:10.1016/j.rser.2013.02.022.

Ragheb, A., El-Shimy, H., & Ragheb, G. (2016). Green Architecture: A Concept of Sustainability. Procedia - Social and Behavioral Sciences, 216, 778–787. doi:10.1016/j.sbspro.2015.12.075.

Perera, A. T. D., Javanroodi, K., & Nik, V. M. (2021). Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology. Applied Energy, 285, 116430. doi:10.1016/j.apenergy.2020.116430.

Du, X., Bokel, R., & van den Dobbelsteen, A. (2014). Building microclimate and summer thermal comfort in free-running buildings with diverse spaces: A Chinese vernacular house case. Building and Environment, 82, 215–227. doi:10.1016/j.buildenv.2014.08.022.

Subramanian, C., Ramachandran, N., & Kumar, S. S. (2016). Comparative Investigation of Traditional, Modern and designed Solar Passive Building for thermal comfort in Thanjavur region. International Journal of Innovations in Engineering and Technology, 7(2), 283–291.

Manioǧlu, G., & Yilmaz, Z. (2008). Energy efficient design strategies in the hot dry area of Turkey. Building and Environment, 43(7), 1301–1309. doi:10.1016/j.buildenv.2007.03.014.

Cabeza, L. F., de Gracia, A., & Pisello, A. L. (2018). Integration of renewable technologies in historical and heritage buildings: A review. Energy and Buildings, 177, 96–111. doi:10.1016/j.enbuild.2018.07.058.

Molua, E. L. (2009). Accommodation of climate change in coastal areas of Cameroon: Selection of household-level protection options. Mitigation and Adaptation Strategies for Global Change, 14(8), 721–735. doi:10.1007/s11027-009-9194-5.

Prosun, P. (2011). The LIFT House: An amphibious strategy for sustainable and affordable housing for the urban poor in flood-prone Bangladesh. Master Thesis, University of Waterloo, Waterloo, Canada.

SCTDA. (2024). Majlis Al Midfa. A square with a one-of-a-kind wind tower in the whole of UAE, Relive past gatherings in a historic square with a unique landmark. Sharjah Commerce & Tourism Development Authority (SCTDA), Sharjah, United Arab Emirates. Available online: https://www.visitsharjah.com/activities/heritage/majlis-al-midfa/ (accessed on February 2024).

Google Map. (2023). Location of Majlis Al Midfa Building, Sharjah, United Arab Emirates. Available online: https://maps.app.goo.gl/CxFa2BoNMgjoV2KN9 (accessed on February 2024).

Anderson, G. (1991). Sharjah, UAE: the urban conservative dilemma. Master Thesis, Durham University, Durham, United Kingdom.

Kazimee, B. A. (2012). Heritage and sustainability in the Islamic built environment. Wit Press, Billerica, United States.

Golubchikov, O., & Badyina, a. (2012). Sustainable housing for sustainable cities: a policy framework for developing countries, UN-HABITAT, Nairobi, Kenya.

Correia, M., Dipasquale, L., & Mecca, S. (2010). Versus: heritage for tomorrow. Vernacular knowledge for sustainable architecture. Firenze University Press, Firenze, Italy. doi:10.36253/978-88-6655-742-5.

Ly, P., Birkeland, J., & Demirbilek, N. (2010). Applying environmentally responsive characteristics of vernacular architecture to sustainable housing in Vietnam. Sustainable Architecture & Urban Development, 4, 287-306.

Aldersoni, A., Albaker, A., Alturki, M., & Said, M. A. (2022). The Impact of Passive Strategies on the Overall Energy Performance of Traditional Houses in the Kingdom of Saudi Arabia. Buildings, 12(11). doi:10.3390/buildings12111837.

Guedes, M. C. (2013). Sustainable Architecture in Africa. Sustainability, Energy and Architecture, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-397269-9.00016-5.

Pisello, A. L., Paolini, R., Diamanti, M. V., Fortunati, E., Castaldo, V. L., & Torre, L. (2016). Nanotech-based cool materials for building energy efficiency. Nano and Biotech Based Materials for Energy Building Efficiency, Springer, Cham, Switzerland. doi:10.1007/978-3-319-27505-5_9.

Gharahshir, M. (2019). Implementation of sustainable architecture patterns in hot and dry regions of Iran by investigating on vernacular sustainable architecture patterns. Master Thesis, University of Applied Sciences, Erfurt, Germany.

Badr, S. (2014). Towards Low Energy Buildings through Vernacular Architecture of Arab Cities. Alexandria University, Alexandria, Egypt.

Chohan, A. H., & Awad, J. (2022). Wind Catchers: An Element of Passive Ventilation in Hot, Arid and Humid Regions, a Comparative Analysis of Their Design and Function. Sustainability, 14(17), 11088. doi:10.3390/su141711088.

Varela-Boydo, C. A., Moya, S. L., & Watkins, R. (2021). Analysis of traditional windcatchers and the effects produced by changing the size, shape, and position of the outlet opening. Journal of Building Engineering, 33, 101828. doi:10.1016/j.jobe.2020.101828.

Mauree, D., Naboni, E., Coccolo, S., Perera, A. T. D., Nik, V. M., & Scartezzini, J. L. (2019). A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, 112, 733–746. doi:10.1016/j.rser.2019.06.005.

Jalaei, F., & Jrade, A. (2015). Integrating building information modeling (BIM) and LEED system at the conceptual design stage of sustainable buildings. Sustainable Cities and Society, 18, 95–107. doi:10.1016/j.scs.2015.06.007.

He, Y., Kwok, K., Mason, M., & Douglas, G. (2013). How should future building structure and emergency response cope with bushfire attacks? Australasia Fire Authority Council. Conference, 2–5 September, 2013, Melbourne, Australia.

Charron, R., & Athienitis, A. (2006). Design and optimization of net zero energy solar homes. ASHRAE Transactions, 112(2), 285–295.

Athienitis, A. K., & O'Brien, W. (2015). Modeling, design, and optimization of net-zero energy buildings. Ernst & Sohn, Berlin, Germany. doi:10.1002/9783433604625.

Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. doi:10.1080/23311916.2016.1167990.

Heidari, A., Taghipour, M., & Yarmahmoodi, Z. (2021). The effect of fixed external shading devices on daylighting and thermal comfort in residential building. Journal of Daylighting, 8(2), 165–180. doi:10.15627/JD.2021.15.

Roetzel, A., & Tsangrassoulis, A. (2012). Impact of climate change on comfort and energy performance in offices. Building and environment, 57, 349-361. doi:10.1016/j.buildenv.2012.06.002.

Lomas, K. J. (1996). The U.K. Applicability Study: An Evaluation of Thermal Simulation Programs for Passive Solar House Design. Building and Environment, 31(3), 197–206. doi:10.1016/0360-1323(95)00050-X.

Nutkiewicz, A., Jain, R. K., & Bardhan, R. (2018). Energy modeling of urban informal settlement redevelopment: Exploring design parameters for optimal thermal comfort in Dharavi, Mumbai, India. Applied Energy, 231, 433–445. doi:10.1016/j.apenergy.2018.09.002.

Shimoda, Y., Sugiyama, M., Nishimoto, R., & Momonoki, T. (2021). Evaluating decarbonization scenarios and energy management requirement for the residential sector in Japan through bottom-up simulations of energy end-use demand in 2050. Applied Energy, 303, 117510. doi:10.1016/j.apenergy.2021.117510.

Bajic, V. (2022). Typical wall construction thermal properties. Sefaira, London, United Kingdom. Available online: https://support.sefaira.com/hc/en-us/articles/4416428261649 (accessed on February 2024).

Bajic, V. (2022). Typical roof construction thermal properties. Sefaira, London, United Kingdom. Available online: https://support.sefaira.com/hc/en-us/articles/4416435350417 (accessed on February 2024).

Lutheran, A. (2022). Default HVAC Systems for new projects. Sefaira, London, United Kingdom. Available online: https://support.sefaira.com/hc/en-us/articles/206249303-Default-HVAC-Systems-for-new-projects (accessed on June 2023).

Corney, A. (2015). Design Loads & Outside Air in the Space Use Tab Explained. Sefaira, London, United Kingdom. Available online: https://support.sefaira.com/hc/en-us/articles/204380595-Design-Loads-Outside-Air-in-the-Space-Use-Tab-Explained (accessed on February 2024).

Federal Competitiveness and Statistics Centre. (2019). Electricity 2019. Federal Competitiveness and Statistics Centre, Dubai, UAE. Available online: https://datasource.kapsarc.org/explore/dataset/electricity-tariff-by-authority-slab-consumption-and-sector/table/?disjunctive.authority&disjunctive.sector&disjunctive.consumption_slab&disjunctive.nationality&sort=authority (accessed on February 2024).

SolarFeeds. (2023). Solar Power Statistics in United Arab Emirates 2021. SolarFeeds, Ontario, United States. Available online: https://www.solarfeeds.com/mag/solar-power-statistics-in-uae-2021/ (accessed on February 2024).

Photovoltaic Solar Energy. (2023). Dimensions of photovoltaic panels: how to choose them correctly? Available online: https://photovoltaicsolarenergy.org/dimensions-of-photovoltaic-panels-how-to-choose-them-correctly/ (accessed on May 2023).

SEWA. (2023). The Declaration of Sharjah City of Conservation. Sharjah Electricity and Water Authority (SEWA), Sharjah, UAE. Available online: https://www.sewa.gov.ae/en/content.aspx?P=4JVpzOgumWxxDeo5mu1mhQ%3D%3D (accessed on February 2024).

Poudel, N. (2022). Section 4: An Introduction to Sefaira Daylighting Visualization. Sefaira, London, UK. Available online: https://support.sefaira.com/hc/en-us/articles/360001328352-Section-4-An-Introduction-to-Sefaira-Daylighting-Visualization (accessed on February 2024).


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-03-018

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Afaq Hyder Hyder Chohan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message