Development of a Method for Increasing the Fire Resistance of Cast-iron Structures of Cultural Heritage Sites under Reconstruction

Sergey Puzach, Lisienkova Liubov, Ekaterina Кamchatova, Lyudmila Nosova, Viktoriya Degtyareva, Valentina Tarasova, Liudmila Komarova

Abstract


When reconstructing cultural heritage sites, significant changes to the original design planning are not allowed. More rational methods are needed to increase the fire resistance of historical buildings, which will ensure their fire safety and preserve their architectural value. Nowadays, most heritage sites do not meet the safety requirements of modern buildings. The purpose of the study is to develop a methodology for increasing the fire resistance of cast iron structures. The key tasks are increasing the fire resistance of buildings during reconstruction and ensuring their fire safety during operation. The tasks have been achieved by developing a new methodology for increasing the fire resistance of cast iron. It includes an integrated approach to assessing the risk of a fire, a predictive model for the occurrence of fire danger, as well as various scenarios for the fire development caused by cast iron heating. The results’ analysis has allowed us to determine the fire resistance limits of cast iron structures. The scientific novelty lies in the study of the fire resistance of cast iron structures using a three-dimensional mathematical model. The resulting values have been obtained via differential equations of the laws of mass conservation, momentum, gaseous energy, and the optical density of smoke.

 

Doi: 10.28991/CEJ-2024-010-02-015

Full Text: PDF


Keywords


Cultural Heritage Objects; Building Reconstruction; Building Structures Fire Resistance; Heat Transfer; Fire Resistance Limit; Outbreak of Gasification Products; Fire-Fighting Structural Elements; Modeling of Thermogasdynamics of a Building Fire.

References


Lisienkova, L., Shindina, T., & Lisienkova, T. (2021). Development of a methodology for assessing the technical level of cultural heritage objects in construction. Civil Engineering Journal (Iran), 7(4), 662–675. doi:10.28991/cej-2021-03091680.

Garcia-Castillo, E., Paya-Zaforteza, I., & Hospitaler, A. (2023). Fire in heritage and historic buildings, a major challenge for the 21st century. Developments in the Built Environment, 13. doi:10.1016/j.dibe.2022.100102.

Salazar, L. G. F., Romão, X., & Paupério, E. (2021). Review of vulnerability indicators for fire risk assessment in cultural heritage. International Journal of Disaster Risk Reduction, 60, 102286. doi:10.1016/j.ijdrr.2021.102286.

Gales, J., Champagne, R., Harun, G., Carton, H., & Kinsey, M. (2022). Fire Evacuation and Exit Design in Heritage Cultural Centres. Springer Briefs in Architectural Design and Technology. Springer Nature, Singapore. doi:10.1007/978-981-19-1360-0.

Arandelovic, B., & Musil, R. (2023). The renovation, rehabilitation and adaptation of Historical Heritage Buildings in Public Ownership. The case of historical buildings of exceptional importance in Vienna. Building and Environment, 246. doi:10.1016/j.buildenv.2023.110937.

Salihu, F., Guri, Z., Cvetkovska, M., & Pllana, F. (2023). Fire Resistance Analysis of Two-Way Reinforced Concrete Slabs. Civil Engineering Journal (Iran), 9(5), 1085–1104. doi:10.28991/CEJ-2023-09-05-05.

Song, Y., Niu, L., Liu, P., & Li, Y. (2022). Fire hazard assessment with indoor spaces for evacuation route selection in building fire scenarios. Indoor and Built Environment, 31(2), 452–465. doi:10.1177/1420326X21997547.

Shih, G. R., & Tsai, P. H. (2023). Safest-path planning approach for indoor fire evacuation. International Journal of Disaster Risk Reduction, 93. doi:10.1016/j.ijdrr.2023.103760.

Hou, G., Li, Q., Song, Z., & Zhang, H. (2021). Optimal fire station locations for historic wood building areas considering individual fire spread patterns and different fire risks. Case Studies in Thermal Engineering, 28, 101548. doi:10.1016/j.csite.2021.101548.

Shaham, Y., & Benenson, I. (2018). Modeling fire spread in cities with non-flammable construction. International Journal of Disaster Risk Reduction, 31, 1337–1353. doi:10.1016/j.ijdrr.2018.03.010.

Deng, K., Zhang, Q., Zhang, H., Xiao, P., & Chen, J. (2022). Optimal Emergency Evacuation Route Planning Model Based on Fire Prediction Data. Mathematics, 10(17), 3146. doi:10.3390/math10173146.

Hvozd, V., Tishchenko, E., Berezovskyi, A., & Sidnei, S. (2021). Research of fire resistance of elements of steel frames of industrial buildings. Materials Science Forum, 1038 MSF, 506–513. doi:10.4028/www.scientific.net/MSF.1038.506.

Porter, A., Wood, C., & Fidler, J. (1998). The behaviour of structural cast iron in fire: a review of previous studies and new guidance on achieving a balance between improvements in fire protection and the conservation of historic structures. English Heritage Research Transactions: Metals, 1, 11-20.

Kincaid, S. (2020). After the Fire: Reconstruction following Destructive Fires in Historic Buildings. Historic Environment: Policy and Practice, 11(1), 21–39. doi:10.1080/17567505.2019.1681647.

Huang, X., Ye, Y., Shenxingquan, & Xing, C. (2011). The mechanical properties of gray cast iron and metallographic structure effect on the chip shape. Advanced Materials Research, 339(1), 200–203. doi:10.4028/www.scientific.net/AMR.339.200.

Hoffstaeter, R. A., Piloto, P. A. G., Martins, C. H., & Rigobello, R. (2023). Numerical Investigation on the Fire Resistance of Partially Encased Steel Columns. International Journal of Civil Engineering, 21(8), 1315–1342. doi:10.1007/s40999-023-00845-1.

Maraveas, C., Wang, Y. C., Swailes, T., & Sotiriadis, G. (2015). An experimental investigation of mechanical properties of structural cast iron at elevated temperatures and after cooling down. Fire Safety Journal, 71(1), 340–352. doi:10.1016/j.firesaf.2014.11.026.

Lacaze, J., Dawson, S., & Hazotte, A. (2021). Cast Iron: A Historical and Green Material Worthy of Continuous Research. International Journal of Technology, 12(6), 1123–1138. doi:10.14716/IJTECH.V12I6.5235.

Kwasek, M., & Piwek, A. (2016). Cast Iron Staircase in Aleksandrów Kujawski (Poland) - History, Construction, Architectural Form. Procedia Engineering, 161, 2147–2154. doi:10.1016/j.proeng.2016.08.807.

Mróz, K., Hager, I., & Korniejenko, K. (2016). Material Solutions for Passive Fire Protection of Buildings and Structures and Their Performances Testing. Procedia Engineering, 151, 284–291. doi:10.1016/j.proeng.2016.07.388.

Buchanan, A. H. (2017). Fire Resistance of Multistorey Timber Buildings. Fire Science and Technology 2015, 5, 9–16. doi:10.1007/978-981-10-0376-9_2.

Gravit, M., Shabunina, D., & Nedryshkin, O. (2023). The Fire Resistance of Transformable Barriers: Influence of the Large-Scale Factor. Fire, 6(8), 294. doi:10.3390/fire6080294.

Golikov, A. D., Cherkasov, E. Yu., Danilov, A. I., & Sivakov, I. A. (2016). Method fire protection of cast iron tunnel lining. Fire and Explosion Safety, 25(12), 22–29. doi:10.18322/pvb.2016.25.12.22-29. (In Russian).

Kodur, V., Kumar, P., & Rafi, M. M. (2020). Fire hazard in buildings: review, assessment and strategies for improving fire safety. PSU Research Review, 4(1), 1–23. doi:10.1108/PRR-12-2018-0033.

Dmitriev, I., Lyulikov, V., Bazhenova, O., & Bayanov, D. (2019). Calculation of fire resistance of building structures in software packages. E3S Web of Conferences, 91, 2007. doi:10.1051/e3sconf/20199102007.

Puzach, S. V., Eremina, T. Y., & Korolchenko, D. A. (2022). The evaluation of actual fire resistance limits of steel structures exposed to real fire loading. Fire and Explosion Safety, 30(6), 61–72. doi:10.22227/0869-7493.2021.30.06.61-72.

Puzach, S. V., & Puzach, V. G. (2005). Mathematical Modeling of Heat and Mass Transfer in Fire in a Compartment of Complex Geometry. Heat Transfer Research, 36(7), 585–600. doi:10.1615/heattransres.v36.i7.50.

Patankar, S. V. (2018). Numerical Heat Transfer and Fluid Flow. CRC Press, Boca Raton, United States. doi:10.1201/9781482234213.

Smagorinsky, J. (1963). General Circulation Experiments with the Primitive Equations. Monthly Weather Review, 91(3), 99–164. doi:10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2.

Puzach, S. V., Eremina, T. Y., & Portnov, F. A. (2022). Building structures of thermal power plants: analysis of fire resistance limits. Fire and Explosion Safety, 31(5), 33–42. doi:10.22227/0869-7493.2022.31.05.33-42.

Mills, A. (2018). Heat and mass transfer. Routledge, New York, United States. doi:10.4324/9780203752173.

Ozisik, M., Orlande, H., & Kassab, A. (2002). Inverse Heat Transfer: Fundamentals and Applications. Applied Mechanics Reviews, 55(1), B18–B19. doi:10.1115/1.1445337.

Koshmarov, Y. A., & Svirshevskii, S. B. (1972). Heat transfer from a sphere in the intermediate dynamics region of a rarefied gas. Fluid Dynamics, 7(2), 343–346. doi:10.1007/BF01186485.

Kuzmitsky, В. (2017). On solving the equations of the integral model of a fire with its significant duration. Journal of Civil Protection, 1(1), 18–25. doi:10.33408/2519-237x.2017.1-1.18. (In Russian).

Buchanan, A. H., & Abu, A. K. (2016). Structural Design for Fire Safety. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118700402.

Maraveas, C., Wang, Y. C., & Swailes, T. (2016). Elevated temperature behaviour and fire resistance of cast iron columns. Fire Safety Journal, 82, 37–48. doi:10.1016/j.firesaf.2016.03.004.

Gu, E. Y. L. (2021). Dynamics Modeling and Control of Cascaded Systems. Advanced Dynamics Modeling, Duality and Control of Robotic Systems, 281–302. doi:10.1201/9781003129165-8.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-02-015

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Sergey Puzach, Liubov Lisienkova, Ekaterina Кamchatova, Lyudmila Nosova, Viktoriya Degtyareva, Valentina Tarasova, Liudmila Komarova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message