Development of a Method for Increasing the Fire Resistance of Cast-iron Structures of Cultural Heritage Sites under Reconstruction
Abstract
Doi: 10.28991/CEJ-2024-010-02-015
Full Text: PDF
Keywords
References
Lisienkova, L., Shindina, T., & Lisienkova, T. (2021). Development of a methodology for assessing the technical level of cultural heritage objects in construction. Civil Engineering Journal (Iran), 7(4), 662–675. doi:10.28991/cej-2021-03091680.
Garcia-Castillo, E., Paya-Zaforteza, I., & Hospitaler, A. (2023). Fire in heritage and historic buildings, a major challenge for the 21st century. Developments in the Built Environment, 13. doi:10.1016/j.dibe.2022.100102.
Salazar, L. G. F., Romão, X., & Paupério, E. (2021). Review of vulnerability indicators for fire risk assessment in cultural heritage. International Journal of Disaster Risk Reduction, 60, 102286. doi:10.1016/j.ijdrr.2021.102286.
Gales, J., Champagne, R., Harun, G., Carton, H., & Kinsey, M. (2022). Fire Evacuation and Exit Design in Heritage Cultural Centres. Springer Briefs in Architectural Design and Technology. Springer Nature, Singapore. doi:10.1007/978-981-19-1360-0.
Arandelovic, B., & Musil, R. (2023). The renovation, rehabilitation and adaptation of Historical Heritage Buildings in Public Ownership. The case of historical buildings of exceptional importance in Vienna. Building and Environment, 246. doi:10.1016/j.buildenv.2023.110937.
Salihu, F., Guri, Z., Cvetkovska, M., & Pllana, F. (2023). Fire Resistance Analysis of Two-Way Reinforced Concrete Slabs. Civil Engineering Journal (Iran), 9(5), 1085–1104. doi:10.28991/CEJ-2023-09-05-05.
Song, Y., Niu, L., Liu, P., & Li, Y. (2022). Fire hazard assessment with indoor spaces for evacuation route selection in building fire scenarios. Indoor and Built Environment, 31(2), 452–465. doi:10.1177/1420326X21997547.
Shih, G. R., & Tsai, P. H. (2023). Safest-path planning approach for indoor fire evacuation. International Journal of Disaster Risk Reduction, 93. doi:10.1016/j.ijdrr.2023.103760.
Hou, G., Li, Q., Song, Z., & Zhang, H. (2021). Optimal fire station locations for historic wood building areas considering individual fire spread patterns and different fire risks. Case Studies in Thermal Engineering, 28, 101548. doi:10.1016/j.csite.2021.101548.
Shaham, Y., & Benenson, I. (2018). Modeling fire spread in cities with non-flammable construction. International Journal of Disaster Risk Reduction, 31, 1337–1353. doi:10.1016/j.ijdrr.2018.03.010.
Deng, K., Zhang, Q., Zhang, H., Xiao, P., & Chen, J. (2022). Optimal Emergency Evacuation Route Planning Model Based on Fire Prediction Data. Mathematics, 10(17), 3146. doi:10.3390/math10173146.
Hvozd, V., Tishchenko, E., Berezovskyi, A., & Sidnei, S. (2021). Research of fire resistance of elements of steel frames of industrial buildings. Materials Science Forum, 1038 MSF, 506–513. doi:10.4028/www.scientific.net/MSF.1038.506.
Porter, A., Wood, C., & Fidler, J. (1998). The behaviour of structural cast iron in fire: a review of previous studies and new guidance on achieving a balance between improvements in fire protection and the conservation of historic structures. English Heritage Research Transactions: Metals, 1, 11-20.
Kincaid, S. (2020). After the Fire: Reconstruction following Destructive Fires in Historic Buildings. Historic Environment: Policy and Practice, 11(1), 21–39. doi:10.1080/17567505.2019.1681647.
Huang, X., Ye, Y., Shenxingquan, & Xing, C. (2011). The mechanical properties of gray cast iron and metallographic structure effect on the chip shape. Advanced Materials Research, 339(1), 200–203. doi:10.4028/www.scientific.net/AMR.339.200.
Hoffstaeter, R. A., Piloto, P. A. G., Martins, C. H., & Rigobello, R. (2023). Numerical Investigation on the Fire Resistance of Partially Encased Steel Columns. International Journal of Civil Engineering, 21(8), 1315–1342. doi:10.1007/s40999-023-00845-1.
Maraveas, C., Wang, Y. C., Swailes, T., & Sotiriadis, G. (2015). An experimental investigation of mechanical properties of structural cast iron at elevated temperatures and after cooling down. Fire Safety Journal, 71(1), 340–352. doi:10.1016/j.firesaf.2014.11.026.
Lacaze, J., Dawson, S., & Hazotte, A. (2021). Cast Iron: A Historical and Green Material Worthy of Continuous Research. International Journal of Technology, 12(6), 1123–1138. doi:10.14716/IJTECH.V12I6.5235.
Kwasek, M., & Piwek, A. (2016). Cast Iron Staircase in Aleksandrów Kujawski (Poland) - History, Construction, Architectural Form. Procedia Engineering, 161, 2147–2154. doi:10.1016/j.proeng.2016.08.807.
Mróz, K., Hager, I., & Korniejenko, K. (2016). Material Solutions for Passive Fire Protection of Buildings and Structures and Their Performances Testing. Procedia Engineering, 151, 284–291. doi:10.1016/j.proeng.2016.07.388.
Buchanan, A. H. (2017). Fire Resistance of Multistorey Timber Buildings. Fire Science and Technology 2015, 5, 9–16. doi:10.1007/978-981-10-0376-9_2.
Gravit, M., Shabunina, D., & Nedryshkin, O. (2023). The Fire Resistance of Transformable Barriers: Influence of the Large-Scale Factor. Fire, 6(8), 294. doi:10.3390/fire6080294.
Golikov, A. D., Cherkasov, E. Yu., Danilov, A. I., & Sivakov, I. A. (2016). Method fire protection of cast iron tunnel lining. Fire and Explosion Safety, 25(12), 22–29. doi:10.18322/pvb.2016.25.12.22-29. (In Russian).
Kodur, V., Kumar, P., & Rafi, M. M. (2020). Fire hazard in buildings: review, assessment and strategies for improving fire safety. PSU Research Review, 4(1), 1–23. doi:10.1108/PRR-12-2018-0033.
Dmitriev, I., Lyulikov, V., Bazhenova, O., & Bayanov, D. (2019). Calculation of fire resistance of building structures in software packages. E3S Web of Conferences, 91, 2007. doi:10.1051/e3sconf/20199102007.
Puzach, S. V., Eremina, T. Y., & Korolchenko, D. A. (2022). The evaluation of actual fire resistance limits of steel structures exposed to real fire loading. Fire and Explosion Safety, 30(6), 61–72. doi:10.22227/0869-7493.2021.30.06.61-72.
Puzach, S. V., & Puzach, V. G. (2005). Mathematical Modeling of Heat and Mass Transfer in Fire in a Compartment of Complex Geometry. Heat Transfer Research, 36(7), 585–600. doi:10.1615/heattransres.v36.i7.50.
Patankar, S. V. (2018). Numerical Heat Transfer and Fluid Flow. CRC Press, Boca Raton, United States. doi:10.1201/9781482234213.
Smagorinsky, J. (1963). General Circulation Experiments with the Primitive Equations. Monthly Weather Review, 91(3), 99–164. doi:10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2.
Puzach, S. V., Eremina, T. Y., & Portnov, F. A. (2022). Building structures of thermal power plants: analysis of fire resistance limits. Fire and Explosion Safety, 31(5), 33–42. doi:10.22227/0869-7493.2022.31.05.33-42.
Mills, A. (2018). Heat and mass transfer. Routledge, New York, United States. doi:10.4324/9780203752173.
Ozisik, M., Orlande, H., & Kassab, A. (2002). Inverse Heat Transfer: Fundamentals and Applications. Applied Mechanics Reviews, 55(1), B18–B19. doi:10.1115/1.1445337.
Koshmarov, Y. A., & Svirshevskii, S. B. (1972). Heat transfer from a sphere in the intermediate dynamics region of a rarefied gas. Fluid Dynamics, 7(2), 343–346. doi:10.1007/BF01186485.
Kuzmitsky, В. (2017). On solving the equations of the integral model of a fire with its significant duration. Journal of Civil Protection, 1(1), 18–25. doi:10.33408/2519-237x.2017.1-1.18. (In Russian).
Buchanan, A. H., & Abu, A. K. (2016). Structural Design for Fire Safety. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118700402.
Maraveas, C., Wang, Y. C., & Swailes, T. (2016). Elevated temperature behaviour and fire resistance of cast iron columns. Fire Safety Journal, 82, 37–48. doi:10.1016/j.firesaf.2016.03.004.
Gu, E. Y. L. (2021). Dynamics Modeling and Control of Cascaded Systems. Advanced Dynamics Modeling, Duality and Control of Robotic Systems, 281–302. doi:10.1201/9781003129165-8.
DOI: 10.28991/CEJ-2024-010-02-015
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Sergey Puzach, Liubov Lisienkova, Ekaterina Кamchatova, Lyudmila Nosova, Viktoriya Degtyareva, Valentina Tarasova, Liudmila Komarova
This work is licensed under a Creative Commons Attribution 4.0 International License.