Ensemble Learning Models for Prediction of Punching Shear Strength in RC Slab-Column Connections

Omid Habibi, Tarik Youssef, Hamed Naseri, Khalid Ibrahim


In reinforced concrete (RC) structures, accurate prediction of the punching shear strength (PSS) of slab-column connections is imperative for ensuring safety. The existing equations in the literature show variability in defining parameters influencing PSS. They neglect potential variable interactions and rely on a limited dataset. This study aims to develop an accurate and reliable model to predict the PSS of slab-column connections. An extensive dataset, including 616 experimental results, was collected from earlier studies. Six robust ensemble machine learning techniques—random forest, gradient boosting, extreme gradient boosting, adaptive boosting, gradient boosting with categorical feature support, and light gradient boosting machines—are employed to predict the PSS. The findings indicate that gradient boosting stands out as the most accurate method compared to other prediction models and existing equations in the literature, achieving a coefficient of determination of 0.986. Moreover, this study utilizes techniques to explain machine learning predictions. A feature importance analysis is conducted, wherein it is observed that the reinforcement ratio and compressive strength of concrete demonstrate the highest influence on the PSS output. SHapley Additive exPlanation is conducted to represent the influence of variables on PSS. A graphical user interface for PSS prediction was developed for users’ convenience.


Doi: 10.28991/CEJ-SP2024-010-01

Full Text: PDF


RC Slab-Column Connection; Punching Shear Strength; Machine Learning; Feature Importance Analysis; SHAP.


Rochdi, E. H., Bigaud, D., Ferrier, E., & Hamelin, P. (2006). Ultimate behavior of CFRP strengthened RC flat slabs under a centrally applied load. Composite Structures, 72(1), 69–78. doi:10.1016/j.compstruct.2004.10.017.

Nguyen, K. L., Trinh, H. T., & Pham, T. M. (2024). Prediction of punching shear strength in flat slabs: ensemble learning models and practical implementation. Neural Computing and Applications, 36(8), 4207-4228. doi:10.1007/s00521-023-09296-0.

Tran, V. L., & Kim, S. E. (2021). A practical ANN model for predicting the PSS of two-way reinforced concrete slabs. Engineering with Computers, 37(3), 2303–2327. doi:10.1007/s00366-020-00944-w.

ACI 318-14. (2014). Building Code Requirements for Structural Concrete (ACI 318-14): An ACI Standard; Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14). American Concrete Institute (ACI), Michigan, United States.

BS EN 1992-2. (2005). Eurocode 2: Design of concrete structures. Concrete bridges. Design and detailing rules. European Committee for Standardization, Brussels, Belgium.

JSCE NO. 15. (2010). Standard Specifications for Concrete. Structures – 2007: Design. Japan Society of Civil Engineers (JSCE), Tokyo, Japan.

Nguyen, H. D., Truong, G. T., & Shin, M. (2021). Development of extreme gradient boosting model for prediction of punching shear resistance of r/c interior slabs. Engineering Structures, 235, 112067. doi:10.1016/j.engstruct.2021.112067.

Mellios, N., Uz, O., & Spyridis, P. (2023). Data-based modeling of the punching shear capacity of concrete structures. Engineering Structures, 275, 115195. doi:10.1016/j.engstruct.2022.115195.

El-said, A., Deifalla, A. F., Yousef, S. E. A. S., El-Sayed, T. A., Tawfik, M., & Ayash, N. M. (2023). Code provisions evaluation for the punching shear capacity of R.C footings without reinforcement for punching shear. Case Studies in Construction Materials, 18, e02182. doi:10.1016/j.cscm.2023.e02182.

Habibi, O., Khaloo, A., & Abdoos, H. (2021). Seismic behavior comparison of RC shear walls strengthened using FRP composites and steel elements. Scientia Iranica, 28(3 A), 1–27. doi:10.24200/sci.2020.55328.4170.

Khaloo, A., Borhani, M. H., Habibi, O., Tabatabaeian, M., & Askari, S. M. (2024). Experimental and numerical investigation on the performance of GFRP-confined expansive concrete-filled unplasticized polyvinyl chloride tubes. Journal of Thermoplastic Composite Materials, 37(3), 983–1011. doi:10.1177/08927057231190558.

Adeli, H. (2001). Neural networks in civil engineering: 1989-2000. Computer-Aided Civil and Infrastructure Engineering, 16(2), 126–142. doi:10.1111/0885-9507.00219.

Salehi, H., & Burgueño, R. (2018). Emerging artificial intelligence methods in structural engineering. Engineering Structures, 171, 170–189. doi:10.1016/j.engstruct.2018.05.084.

Thai, H.-T. (2022). Machine learning for structural engineering: A state-of-the-art review. Structures, 38, 448–491. doi:10.1016/j.istruc.2022.02.003.

Elshafey, A. A., Rizk, E., Marzouk, H., & Haddara, M. R. (2011). Prediction of punching shear strength of two-way slabs. Engineering Structures, 33(5), 1742–1753. doi:10.1016/j.engstruct.2011.02.013.

ACI 318-08. (2008). Building Code Requirements for Structural Concrete (ACI 318-08): An ACI Standard; Commentary on Building Code Requirements for Structural Concrete (ACI 318R-08). American Concrete Institute (ACI), Michigan, United States.

Chetchotisak, P., Ruengpim, P., Chetchotsak, D., & Yindeesuk, S. (2018). Punching Shear Strengths of RC Slab-Column Connections: Prediction and Reliability. KSCE Journal of Civil Engineering, 22(8), 3066–3076. doi:10.1007/s12205-017-0456-6.

Faridmehr, I., Nehdi, M. L., & Hajmohammadian Baghban, M. (2022). Novel informational bat-ANN model for predicting punching shear of RC flat slabs without shear reinforcement. Engineering Structures, 256, 114030. doi:10.1016/j.engstruct.2022.114030.

Naseri Nasab, M., Jahangir, H., Hasani, H., Majidi, M. H., & Khorashadizadeh, S. (2023). Estimating the punching shear capacities of concrete slabs reinforced by steel and FRP rebars with ANN-Based GUI toolbox. Structures, 50, 1204–1221. doi:10.1016/j.istruc.2023.02.072.

Choi, K. K., Reda Taha, M. M., & Sherif, A. G. (2007). Simplified punching shear design method for slab-column connections using fuzzy learning. ACI Structural Journal, 104(4), 438–447. doi:10.14359/18774.

Akbarpour, H., & Akbarpour, M. (2017). Prediction of punching shear strength of two-way slabs using artificial neural network and adaptive neuro-fuzzy inference system. Neural Computing and Applications, 28(11), 3273–3284. doi:10.1007/s00521-016-2239-2.

Mangalathu, S., Shin, H., Choi, E., & Jeon, J. S. (2021). Explainable machine learning models for punching shear strength estimation of flat slabs without transverse reinforcement. Journal of Building Engineering, 39, 102300. doi:10.1016/j.jobe.2021.102300.

Cao, M. T. (2023). Advanced soft computing techniques for predicting punching shear strength. Journal of Building Engineering, 79, 107800. doi:10.1016/j.jobe.2023.107800.

Wu, Y., & Zhou, Y. (2023). Prediction and feature analysis of punching shear strength of two-way reinforced concrete slabs using optimized machine learning algorithm and Shapley additive explanations. Mechanics of Advanced Materials and Structures, 30(15), 3086–3096. doi:10.1080/15376494.2022.2068209.

Ng, W., Minasny, B., de Sousa Mendes, W., & Melo Demattê, J. A. (2020). The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil, 6(2), 565–578. doi:10.5194/soil-6-565-2020.

Degtyarev, V. V. (2022). Machine Learning Models for Predicting Bond Strength of Deformed Bars in Concrete. ACI Structural Journal, 119(5), 43–56. doi:10.14359/51734833.

Shahani, N. M., Kamran, M., Zheng, X., Liu, C., & Guo, X. (2021). Application of gradient boosting machine learning algorithms to predict uniaxial compressive strength of soft sedimentary rocks at Thar coalfield. Advances in Civil Engineering, 2021, 1–19. doi:10.1155/2021/2565488.

Ibrahim, A. A., Ridwan, R. L., Muhammed, M. M., Abdulaziz, R. O., & Saheed, G. A. (2020). Comparison of the CatBoost Classifier with other Machine Learning Methods. International Journal of Advanced Computer Science and Applications, 11(11), 738–748. doi:10.14569/IJACSA.2020.0111190.

Liu, Y., Lyu, C., Khadka, A., Zhang, W., & Liu, Z. (2020). Spatio-Temporal Ensemble Method for Car-Hailing Demand Prediction. IEEE Transactions on Intelligent Transportation Systems, 21(12), 5328–5333. doi:10.1109/TITS.2019.2948790.

Cai, W., Wei, R., Xu, L., & Ding, X. (2022). A method for modelling greenhouse temperature using gradient boost decision tree. Information Processing in Agriculture, 9(3), 343–354. doi:10.1016/j.inpa.2021.08.004.

Shangguan, Q., Fu, T., Wang, J., Fang, S., & Fu, L. (2022). A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns. Accident Analysis and Prevention, 164, 106500. doi:10.1016/j.aap.2021.106500.

Xia, Y., He, L., Li, Y., Liu, N., & Ding, Y. (2020). Predicting loan default in peer-to-peer lending using narrative data. Journal of Forecasting, 39(2), 260–280. doi:10.1002/for.2625.

Sih, N.-S. (1957). Shearing Strength of Reinforced Concrete Slabs. Journal of the Structural Division, 83(1), 29–58. doi:10.1061/jsdeag.0000081.

Kinnunen, S., & Nylander, H. S. E. (1960). Punching of concrete slabs without shear reinforcement. Elander, Mölnlycke, Sweden.

Mowrer, R. D., & Vanderbilt, M. D. (1967). Shear Strength of Lightweight Aggregate Reinforced Concrete Flat Plates. ACI Journal Proceedings, 64(11). doi:10.14359/7601.

Hanson, N. W., & Hanson, J. M. (1968). Shear and moment transfer between concrete slabs and columns. Portland Cement Association, Research and Development Laboratories, Chicago, United States.

Kinnunen S, Nylander H, T. P. (1978). Investigations on punching at the division of building statics and structural engineering. Nordisk Betong, 3, 25–27.

Regan, P., Walker, P., & Zakaria, K. (1979). Tests of reinforced concrete flat slabs, CIRIA Project No. RP 220. Polytechnic of Central London, London, United Kingdom.

Rankin, G. I. B., & Long, A. E. (2019). Punching strength of conventional slab-column specimens. Engineering Structures, 178(2), 37–54. doi:10.1016/j.engstruct.2018.10.014.

Gardner, N. J. (1990). Relationship of the punching shear capacity of reinforced concrete slabs with concrete strength. ACI Structural Journal, 87(1), 66–71. doi:10.14359/2932.

Lovrovich, J. S., & McLean, D. I. (1990). Punching shear behavior of slabs with varying span-depth ratios. ACI Structural Journal, 87(5), 507–511. doi:10.14359/2616.

McLean, D. I., Phan, L. T., Lew, H. S., & White, R. N. (1990). Punching shear behavior of lightweight concrete slabs and shells. ACI Structural Journal, 87(4), 386–392. doi:10.14359/2735.

Marzouk, H., & Hussein, A. (1991). Punching shear analysis of reinforced high-strength concrete slabs. Canadian Journal of Civil Engineering, 18(6), 954–963. doi:10.1139/l91-118.

Alexander, S. D. B., & Simmonds, S. H. (1992). Tests of column-flat plate connections. ACI Structural Journal, 89(5), 495–502. doi:10.14359/2948.

Marzouk, H., & Hussein, A. (1991). Experimental investigation on the behavior of high-strength concrete slabs. ACI Structural Journal, 88(6), 701–713. doi:10.14359/1261.

Tomaszewicz, A. (1993). Punching shear capacity of reinforced concrete slabs. High Strength Concrete SP2-Plates and Shells. Report 2.3. Report No. STF70A93082. SINTEF, Trondheim, Norway.

Fang, I. K., Lee, J. H., & Chen, C. R. (1994). Behavior of partially restrained slabs under concentrated load. ACI Structural Journal, 91(2), 133–139. doi:10.14359/4557.

Collins, M. P., Mitchell, D., Adebar, P., & Vecchio, F. J. (1996). A general shear design method. ACI Structural Journal, 93(1), 36–45. doi:10.14359/9838.

Hallgren, M. (1998). Punching shear capacity of reinforced high-strength concrete slabs. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden.

Marzouk, H., & Jiang, D. (1997). Experimental investigation on shear enhancement types for high-strength concrete plates. ACI Structural Journal, 94(1), 49–58. doi:10.14359/460.

Ghannoum, C. M. (1998). Effect of high-strength concrete on the performance of slab-column specimens. Master Thesis, McGill University, Montreal, Canada.

Marzouk, H., Emam, M., & Hilal, M. S. (1998). Effect of high-strength concrete slab on the behavior of slab-column connections. ACI Structural Journal, 95(3), 227–237. doi:10.14359/9713.

Broms, C. E. (2000). Elimination of flat plate punching failure mode. ACI Structural Journal, 97(1), 94–101. doi:10.14359/838.

Li, K. K. L. (2000). Influence of size on punching shear strength of concrete slabs. Master Thesis, McGill University, Montreal, Canada.

McHarg, P. J., Cook, W. D., Mitchell, D., & Yoon, Y. S. (2000). Improved transmission of high-strength concrete column loads through normal strength concrete slabs. ACI Structural Journal, 97(1), 157–165. doi:10.14359/845.

Osman, M., Marzouk, H., & Helmy, S. (2000). Behavior of high-strength lightweight concrete slabs under punching loads. ACI Structural Journal, 97(3), 492–498. doi:10.14359/4644.

Guandalini, S., & Muttoni, A. (2004). Symmetrical punching tests on slabs without transverse reinforcement. Test Report, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Sundquist, H., & Kinnunen, S. (2004). The effect of column head and drop panels on the punching capacity of flat slabs. Bulletin, 82.

Abdel Hafez, A. M. (2005). Punching shear behavior of normal and high-strength concrete slabs under static loading. Journal of Engineering Sciences, 33(4), 1215-1235.

Ozden, S., Ersoy, U., & Ozturan, T. (2006). Punching shear tests of normal- and high-strength concrete flat plates. Canadian Journal of Civil Engineering, 33(11), 1389–1400. doi:10.1139/L06-089.

Birkle, G., & Dilger, W. H. (2008). Influence of slab thickness on punching shear strength. ACI Structural Journal, 105(2), 180–188. doi:10.14359/19733.

Lee, J.-H., Yoon, Y.-S., Lee, S.-H., Cook, W. D., & Mitchell, D. (2008). Enhancing Performance of Slab-Column Connections. Journal of Structural Engineering, 134(3), 448–457. doi:10.1061/(asce)0733-9445(2008)134:3(448).

Metwally, I. M., Issa, M. S., & El-Betar, S. A. (2008). Punching shear resistance of normal and high strength reinforced concrete flat slabs. Civ Eng Res Mag, 30(3), 982-1003.

Marzouk, R., & Rizk, E. (2009). Punching analysis of reinforced concrete two-way slabs. Research Report RCS01, Faculty of Engineering and Applied Science, Memorial University of Newfoundland St. John’s, Newfoundland, Canada.

Inácio, M. M. G., Almeida, A. F. O., Faria, D. M. V., Lúcio, V. J. G., & Ramos, A. P. (2015). Punching of high strength concrete flat slabs without shear reinforcement. Engineering Structures, 103, 275–284. doi:10.1016/j.engstruct.2015.09.010.

Einpaul, J., Bujnak, J., Ruiz, M. F., & Muttoni, A. (2016). Study on influence of column size and slab slenderness on punching strength. ACI Structural Journal, 113(1), 135–146. doi:10.14359/51687945.

Francesconi, L., Pani, L., & Stochino, F. (2016). Punching shear strength of reinforced recycled concrete slabs. Construction and Building Materials, 127, 248–263. doi:10.1016/j.conbuildmat.2016.09.094.

Teng, S., Chanthabouala, K., Lim, D. T. Y., & Hidayat, R. (2018). Punching shear strength of slabs and influence of low reinforcement ratio. ACI Structural Journal, 115(6), 1816. doi:10.14359/51701089.

Urban, T., Gołdyn, M., Krawczyk, Ł., & Sowa, Ł. (2019). Experimental investigations on punching shear of lightweight aggregate concrete flat slabs. Engineering Structures, 197, 109371. doi:10.1016/j.engstruct.2019.109371.

Shaaban, I. G., Hosni, A. H., Montaser, W. M., & El-Sayed, M. M. (2020). Effect of premature loading on punching resistance of reinforced concrete flat slabs. Case Studies in Construction Materials, 12, 320. doi:10.1016/j.cscm.2019.e00320.

Sahoo, S., & Singh, B. (2021). Punching shear capacity of recycled-aggregate concrete slab-column connections. Journal of Building Engineering, 41, 102430. doi:10.1016/j.jobe.2021.102430.

Qian, K., Li, J. S., Huang, T., Weng, Y. H., & Deng, X. F. (2022). Punching shear strength of corroded reinforced concrete slab-column connections. Journal of Building Engineering, 45, 103489. doi:10.1016/j.jobe.2021.103489.

ACI 318-19. (2019). Building Code Requirements for Structural Concrete (ACI 318-19): An ACI Standard; Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19). American Concrete Institute (ACI), Michigan, United States.

BS 8110-1-1997. (1997). Structural use of concrete, part 1: Code of practice for design and construction. British Standards Institution (BSI), London, United Kingdom.

Sherif, A. G., & Dilger, W. H. (1996). Critical review of the CSA A23.3-94 punching shear strength provisions for interior columns. Canadian Journal of Civil Engineering, 23(5), 998–1011. doi:10.1139/l96-907.

Gardner, N. J., & Shao, X. Y. (1996). Punching shear of continuous flat reinforced concrete slabs. ACI Structural Journal, 93(2), 218–228. doi:10.14359/1494.

Japan Society of Civil Engineers (JSCE). (2007). Standard Specifications for Concrete Structures. Japan Society of Civil Engineers (JSCE), Tokyo, Japan.

Jabbar, A. S. A., Alam, M. A., & Mustapha, K. N. (2012). A new equation for predicting punching shear strength of R/C flat plates. Proceedings National Graduate Conference, 8-10 November, 2012, University Tenaga Nasional, Putrajaya Campus, Kajang, Malaysia.

Freedman, D., Pisani, R., & Purves, R. (2020). Statistics: Fourth international student edition. W. W. Norton & Company, New York, United States.

Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. doi:10.1023/A:1010933404324

Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792. doi:10.1890/07-0539.1.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. doi:10.1214/aos/1013203451.

Drucker, H. (1997). Improving regressors using boosting techniques. Proceedings of the Fourteenth International Conference on Machine Learning, 8-12 July, 1997, San Francisco, United States.

chapire, R. E. (2013). Explaining AdaBoost. Empirical Inference, 37–52. doi:10.1007/978-3-642-41136-6_5.

Dhananjay, B., & Sivaraman, J. (2021). Analysis and classification of heart rate using CatBoost feature ranking model. Biomedical Signal Processing and Control, 68, 102610. doi:10.1016/j.bspc.2021.102610.

CatBoost. (2024). CatBoost is a machine learning algorithm that uses gradient boosting on decision trees. Available online: https://catboost.ai/docs/ (accessed on May 2024).

Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. doi:10.1145/2939672.2939785.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 2017-December, 3147–3155.

Zhou, Z., Wang, M., Huang, J., Lin, S., & Lv, Z. (2022). Blockchain in Big Data Security for Intelligent Transportation with 6G. IEEE Transactions on Intelligent Transportation Systems, 23(7), 9736–9746. doi:10.1109/TITS.2021.3107011.

Yang, S., & Zhang, H. (2018). Comparison of Several Data Mining Methods in Credit Card Default Prediction. Intelligent Information Management, 10(05), 115–122. doi:10.4236/iim.2018.105010.

Shirzadi Javid, A. A., Naseri, H., & Etebari Ghasbeh, M. A. (2021). Estimating the Optimal Mixture Design of Concrete Pavements Using a Numerical Method and Meta-heuristic Algorithms. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45(2), 913–927. doi:10.1007/s40996-020-00352-6.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.

Naseri, H., Waygood, E. O. D., Wang, B., & Patterson, Z. (2022). Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters. International Journal of Environmental Research and Public Health, 19(24), 16844. doi:10.3390/ijerph192416844.

Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. Mathematical Intelligencer, 27(2), 83-85. doi:10.1007/BF02985802.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer Series in Statistics. Springer New York, United States. doi:10.1007/978-0-387-84858-7.

DIN 1045-1 (2008). Plain, Reinforced and Prestressed Concrete Structures. Design and Construction. Deutsches Institut für Normung (DIN), Berlinb, Germany.

Zhang, Q. I. (2003). The punching strength of high strength flat slabs: Experimental study. Research Study, Memorial University of Newfoundland St. John’s, Newfoundland, Canada.

BS EN 1992-1-1. (2004). Eurocode 2: Design of concrete structures: Part 1-1: General rules and rules for buildings. British Standards Institution. British Standards Institution, London, United Kingdom.

Marzouk, H., & Chen, Z. W. (1995). Fracture Energy and Tension Properties of High-Strength Concrete. Journal of Materials in Civil Engineering, 7(2), 108–116. doi:10.1061/(asce)0899-1561(1995)7:2(108).

Marzouk, H., Emam, M., & Hilal, M. S. (1998). Sensitivity of shear strength to fracture energy of high-strength concrete slabs. Canadian Journal of Civil Engineering, 25(1), 40–50. doi:10.1139/l97-053.

Full Text: PDF

DOI: 10.28991/CEJ-SP2024-010-01


  • There are currently no refbacks.

Copyright (c) 2024 Omid Habibi, Tarik Youssef, Hamed Naseri, Khalid Ibrahim

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.