Effect of Steel Fiber on Plastic Hinge Length of Concrete Columns: Buckingham Theory Application

. Tavio, Bambang Sabariman, Slamet Widodo


The accuracy of designing the performance of concrete structures nowadays not only depends on the use of standard materials (cement, sand, and gravel) for certain concrete strengths but also on the accuracy of using additional materials for concrete, such as steel fiber. The use of steel fiber not only can improve the performance of concrete structures to behave in a ductile manner but can also form plastic hinges according to design purposes. The design of the axial load of Pa=0.121.Ag.f'c is based on the prediction of the column’s axial capacity. The columns were designed to behave in a flexural manner. As predicted, the lengths of the plastic hinges were found not too long. Controlling the length of plastic hinges in the design of structural concrete members is necessary to avoid excessive displacements. The control is mainly related to the prediction of the plastic hinge length. Thus, in this case, a plastic hinge length formula is required. In the study, the length of the plastic hinges of columns, which are confined with square stirrups and reinforced with steel fiber with Vf = 0%, 0.5%, 1%, 1.5%, and 2%, is proposed. This plastic hinge length formula is proposed after all column test specimens have met the displacement ductility requirement of mD>4, meaning that all test specimens are defined as very ductile.


Doi: 10.28991/CEJ-2024-010-05-03

Full Text: PDF


Buckingham Theory; Disaster Risk Reduction; Ductility; Performance; Plastic Hinge Length; Steel Fiber.


CDP. (2023). Turkey-Syria Earthquake 2023. Center for Disaster Philanthropy, Washington, United States. Available online: https://disasterphilanthropy.org/disasters/2023-turkey-syria-earthquake/ (accessed on April 2024).

Rakaa, I. G. P., Tavio, & Astawaa, M. D. (2014). State-of-the-art report on partially-prestressed concrete earthquake-resistant building structures for highly-seismic region. Procedia Engineering, 95, 43–53. doi:10.1016/j.proeng.2014.12.164.

ACI 318-19 (2019). Building Code Requirements for Structural Concrete, American Concrete Institute, Michigan, United States.

Christianto, D., Tavio, & Irianto, M. R. (2023). Shear Strength of SFRC Beams Without Coarse Aggregate Using Finite Element Analysis with Bond-Slip. International Review of Civil Engineering, 14(4), 320–330. doi:10.15866/irece.v14i4.22482.

Honestyo, A., Tavio, & Ardhyananta, H. (2023). Axial Compressive Behavior of Bubble-Size Plastic Straw Waste FRP-Confined Circular Concrete. International Journal on Engineering Applications, 11(2), 73–80. doi:10.15866/irea.v11i2.22603.

Mortezaei, A., & Ronagh, H. R. (2012). Plastic hinge length of FRP strengthened reinforced concrete columns subjected to both far-fault and near-fault ground motions. Scientia Iranica, 19(6), 1365-1378. doi:10.1016/j.scient.2012.10.010.

Bayrak, B., Akarsu, O., Kaplan, G., & Aydin, A. C. (2023). The plastic hinge length prediction of RC members by using ANN. Sadhana - Academy Proceedings in Engineering Sciences, 48(3). doi:10.1007/s12046-023-02182-4.

Opabola, E. A., & Elwood, K. J. (2023). Flexure-axial-shear interaction of ductile beams with single-crack plastic hinge behaviour. Earthquake Engineering and Structural Dynamics, 52(7), 2115–2134. doi:10.1002/eqe.3873.

Junior, O. de A. S., & Ramam Carvalho de Oliveira, D. (2024). Numerical simulation and experimental analysis of plastic hinge length of reinforced concrete columns under monotonic flexure and constant axial load. Structural Concrete. Portico. doi:10.1002/suco.202300122.

Sthapit, R., & Bandelt, M. (2023). Experimental Characterization of Plastic Hinge Behavior from Flexure and Axial Effects. International Interactive Symposium on Ultra-High-Performance Concrete, 3(1), 77. doi:10.21838/uhpc.16690.

Pham, P. A. H., & Hung, C. C. (2023). Assessment of plastic hinge length in reinforced concrete columns. Structure and Infrastructure Engineering, 1–16. doi:10.1080/15732479.2023.2263432.

Almeida, J., & Bandelt, M. (2023). Effects of Axial Load and Tensile Strength on Reinforced UHPC Plastic Hinge Length. International Interactive Symposium on Ultra-High Performance Concrete, 3(1), 31. doi:10.21838/uhpc.16658.

Sahebjam, K. (1984). The Effects of Steel Fibers on the Plastic Rotation Capacity and Properties of Reinforced Concrete Continuous Beams. Master Thesis, South Dakota State University, Brookings, United States.

Herbert, A., & Sawyer, J. R. (1964). Design of concrete frames for two failure stages. ACI Structural Journal, 405-437.

Corley, W. G. (1966). Rotational Capacity of Reinforced Concrete Beams. Journal of the Structural Division, 92(5), 121–146. doi:10.1061/jsdeag.0001504.

Mattock, A. H. (1967). Discussion of “Rotational Capacity of Reinforced Concrete Beams.” Journal of the Structural Division, 93(2), 519–522. doi.org/10.1061/jsdeag.0001678.

Park, R., & Paulay, T. (1975). Reinforced Concrete Structures. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172834.

Zahn, F. A. (1985). Design of Reinforced Concrete Bridge Columns for Strength and Ductility. Ph.D. Thesis. University of Canterbury, Christchurch, New Zealand.

Priestley, M. J. N., & Park, R. (1987). Strength of Ductility of Concrete Bridge Columns Under Seismic Loading. ACI Structural Journal, 84(1), 61–76. doi:10.14359/2800.

Sheikih, S. A., & Khoury, S. S. (1993). Confined concrete columns with Stubs. ACI Structural Journal, 90(4), 414–431. doi:10.14359/3960.

Lu, Y., Gu, X., & Guan, J. (2005). Probabilistic Drift Limits and Performance Evaluation of Reinforced Concrete Columns. Journal of Structural Engineering, 131(6), 966–978. doi:10.1061/(asce)0733-9445(2005)131:6(966).

Moehle, J. (2015). Seismic Design of Reinforced Concrete Buildings. McGraw Hill, New York, United States.

Paulay, T., and Priestley, M. J. N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172841

Panagiotakos, T. B., & Fardis, M. N. (2001). Deformations of reinforced concrete members at yielding and ultimate. ACI Structural Journal, 98(2), 135–148. doi:10.14359/10181.

Berry, M. P., Lehman, D. E., & Lowes, L. N. (2008). Lumped-plasticity models for performance simulation of bridge columns. ACI Structural Journal, 105(3), 270–279. doi:10.14359/19786.

Gu, D. S., Wu, Y. F., Wu, G., & Wu, Z. S. (2012). Plastic hinge analysis of FRP confined circular concrete columns. Construction and Building Materials, 27(1), 223–233. doi:10.1016/j.conbuildmat.2011.07.056.

Youssf, O., ElGawady, M. A., & Mills, J. E. (2015). Displacement and plastic hinge length of FRP-confined circular reinforced concrete columns. Engineering Structures, 101, 465–476. doi:10.1016/j.engstruct.2015.07.026.

Pudjisuryadi, P., Tavio, & Suprobo, P. (2016). Axial compressive behavior of square concrete columns externally collared by light structural steel angle sections. International Journal of Applied Engineering Research, 11(7), 4655–4666.

ACI 374.1-05. (2014), Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary, American Concrete Institute, Michigan, United States.

Ou, Y.-C., Tsai, M.-S., Liu, K.-Y., & Chang, K.-C. (2012). Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index. Journal of Materials in Civil Engineering, 24(2), 207–215. doi:10.1061/(asce)mt.1943-5533.0000372.

Gkournelos, P. D., Triantafillou, T. C., & Bournas, D. A. (2021). Seismic upgrading of existing reinforced concrete buildings: A state-of-the-art review. Engineering Structures, 240, 112273. doi:10.1016/j.engstruct.2021.112273.

Sakai, K., & Sheikh, S. A. (1989). What do we know about confinement in reinforced concrete columns? (A critical review of previous work and code provisions). ACI Structural Journal, 86(2), 192–207. doi:10.14359/2705.

Tavio, Machmoed, S. P., & Raka, I. G. P. (2022). Behavior of Square RC Columns Confined with Interlocking Square Spiral Under Axial Compressive Loading. International Journal on Engineering Applications, 10(5), 322–335. doi:10.15866/irea.v10i5.20655.

Agustiar, Tavio, Raka, I. G. P., & Anggraini, R. (2018). Behavior of concrete columns reinforced and confined by high-strength steel bars. International Journal of Civil Engineering and Technology, 9(7), 1249–1257.

Sabariman, B., Soehardjono, A., Wisnumurti, W., Wibowo, A., & Tavio, T. (2018). Stress-strain behavior of steel fiber-reinforced concrete cylinders spirally confined with steel bars. Advances in Civil Engineering, 2018, 1–8. doi:10.1155/2018/6940532.

Soehardjono, A., Sabariman, B., Wisnumurti, & Wibowo, A. (2022). Contribution of Steel Fibers on Ductility of Confined Concrete Columns. International Journal of GEOMATE, 23(97), 188–195. doi:10.21660/2022.97.3483.

FEMA 356. (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Federal Emergency Management Agency, Washington, United States.

Wu, Y. F., & Jiang, C. (2014). Effect of confinement on plastic hinge length of RC square columns. 23rd Australasian Conf. on the Mechanics of Structures and Materials, 9-12 December, 2014, Southern Cross University, Byron Bay, Australia.

Sabariman, B., & Sofianto, M. F. (2017). Study of crack patterns in beam column joint due to upwards anchoring beam effect. AIP Conference Proceedings, 1855(040004), 1–8. doi:10.1063/1.4985500.

ASCE/SEI 41-06. (2007). Seismic Rehabilitation of Existing Buildings. American Society of Civil Engineers, Reston, United States.

SNI 2052:2017. (2017). Concrete Reinforcing Steel. Standard Nasional Indonesia, Jakarta, Indonesia. (in Indonesian).

Scott, B. D., Park, R., & Priestley, M. J. N. (1982). Stress-Strain Behavior of Concrete Confined By Overlapping Hoops At Low and High Strain Rates. Journal of the American Concrete Institute, 79(1), 13–27. doi:10.14359/10875.

Sabariman, B., Soehardjono, A., Wisnumurti, Wibowo, A., & Tavio. (2020). Stress-strain model for confined fiber-reinforced concrete under axial compression. Archives of Civil Engineering, 66(2), 119–133. doi:10.24425/ace.2020.131800.

Kusuma, B., and Tavio. (2008). Unified Stress-Strain Model for Confined Columns of Any Concrete and Steel Strengths. International Conference on Earthquake Engineering and Disaster Mitigation, 2008.

Machmoed, S. P., Tavio, & Raka, I. G. P. (2021). Performance of Square Reinforced Concrete Columns Confined With Innovative Confining System Under Axial Compression. International Journal of GEOMATE, 21(85), 137–144. doi:10.21660/2021.85.j2085.

MacHmoed, S. P., Tavio, T., & Raka, I. G. P. (2020). Potential of new innovative confinement for square reinforced concrete columns. Journal of Physics: Conference Series, 1469(1), 1–7. doi:10.1088/1742-6596/1469/1/012027.

Wibowo, A., Wilson, J. L., Lam, N. T., & Gad, E. F. (2014). Drift capacity of lightly reinforced concrete columns. Australian Journal of Structural Engineering, 15(2), 131-150. doi:10.7158/s13-002.2014.15.2

Harris, H., & Sabnis, G. (1999). Structural Modeling and Experimental Techniques, Second Edition. CRC Press, Boca Raton, United States. doi:10.1201/9781420049589.

Bae, S., & Bayrak, O. (2008). Plastic hinge length of reinforced concrete columns. ACI Structural Journal, 105(3), 290. doi:10.14359/19788

Ou, Y. C., Kurniawan, R. A., Kurniawan, D. P., & Nguyen, N. D. (2012). Plastic hinge length of circular reinforced concrete columns. Computers and Concrete, 10(6), 663–681. doi:10.12989/cac.2012.10.6.663.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-05-03


  • There are currently no refbacks.

Copyright (c) 2024 Bambang Sabariman

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.