Effect of Steel Fiber on Plastic Hinge Length of Concrete Columns: Buckingham Theory Application
Abstract
Doi: 10.28991/CEJ-2024-010-05-03
Full Text: PDF
Keywords
References
CDP. (2023). Turkey-Syria Earthquake 2023. Center for Disaster Philanthropy, Washington, United States. Available online: https://disasterphilanthropy.org/disasters/2023-turkey-syria-earthquake/ (accessed on April 2024).
Rakaa, I. G. P., Tavio, & Astawaa, M. D. (2014). State-of-the-art report on partially-prestressed concrete earthquake-resistant building structures for highly-seismic region. Procedia Engineering, 95, 43–53. doi:10.1016/j.proeng.2014.12.164.
ACI 318-19 (2019). Building Code Requirements for Structural Concrete, American Concrete Institute, Michigan, United States.
Christianto, D., Tavio, & Irianto, M. R. (2023). Shear Strength of SFRC Beams Without Coarse Aggregate Using Finite Element Analysis with Bond-Slip. International Review of Civil Engineering, 14(4), 320–330. doi:10.15866/irece.v14i4.22482.
Honestyo, A., Tavio, & Ardhyananta, H. (2023). Axial Compressive Behavior of Bubble-Size Plastic Straw Waste FRP-Confined Circular Concrete. International Journal on Engineering Applications, 11(2), 73–80. doi:10.15866/irea.v11i2.22603.
Mortezaei, A., & Ronagh, H. R. (2012). Plastic hinge length of FRP strengthened reinforced concrete columns subjected to both far-fault and near-fault ground motions. Scientia Iranica, 19(6), 1365-1378. doi:10.1016/j.scient.2012.10.010.
Bayrak, B., Akarsu, O., Kaplan, G., & Aydin, A. C. (2023). The plastic hinge length prediction of RC members by using ANN. Sadhana - Academy Proceedings in Engineering Sciences, 48(3). doi:10.1007/s12046-023-02182-4.
Opabola, E. A., & Elwood, K. J. (2023). Flexure-axial-shear interaction of ductile beams with single-crack plastic hinge behaviour. Earthquake Engineering and Structural Dynamics, 52(7), 2115–2134. doi:10.1002/eqe.3873.
Junior, O. de A. S., & Ramam Carvalho de Oliveira, D. (2024). Numerical simulation and experimental analysis of plastic hinge length of reinforced concrete columns under monotonic flexure and constant axial load. Structural Concrete. Portico. doi:10.1002/suco.202300122.
Sthapit, R., & Bandelt, M. (2023). Experimental Characterization of Plastic Hinge Behavior from Flexure and Axial Effects. International Interactive Symposium on Ultra-High-Performance Concrete, 3(1), 77. doi:10.21838/uhpc.16690.
Pham, P. A. H., & Hung, C. C. (2023). Assessment of plastic hinge length in reinforced concrete columns. Structure and Infrastructure Engineering, 1–16. doi:10.1080/15732479.2023.2263432.
Almeida, J., & Bandelt, M. (2023). Effects of Axial Load and Tensile Strength on Reinforced UHPC Plastic Hinge Length. International Interactive Symposium on Ultra-High Performance Concrete, 3(1), 31. doi:10.21838/uhpc.16658.
Sahebjam, K. (1984). The Effects of Steel Fibers on the Plastic Rotation Capacity and Properties of Reinforced Concrete Continuous Beams. Master Thesis, South Dakota State University, Brookings, United States.
Herbert, A., & Sawyer, J. R. (1964). Design of concrete frames for two failure stages. ACI Structural Journal, 405-437.
Corley, W. G. (1966). Rotational Capacity of Reinforced Concrete Beams. Journal of the Structural Division, 92(5), 121–146. doi:10.1061/jsdeag.0001504.
Mattock, A. H. (1967). Discussion of “Rotational Capacity of Reinforced Concrete Beams.” Journal of the Structural Division, 93(2), 519–522. doi.org/10.1061/jsdeag.0001678.
Park, R., & Paulay, T. (1975). Reinforced Concrete Structures. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172834.
Zahn, F. A. (1985). Design of Reinforced Concrete Bridge Columns for Strength and Ductility. Ph.D. Thesis. University of Canterbury, Christchurch, New Zealand.
Priestley, M. J. N., & Park, R. (1987). Strength of Ductility of Concrete Bridge Columns Under Seismic Loading. ACI Structural Journal, 84(1), 61–76. doi:10.14359/2800.
Sheikih, S. A., & Khoury, S. S. (1993). Confined concrete columns with Stubs. ACI Structural Journal, 90(4), 414–431. doi:10.14359/3960.
Lu, Y., Gu, X., & Guan, J. (2005). Probabilistic Drift Limits and Performance Evaluation of Reinforced Concrete Columns. Journal of Structural Engineering, 131(6), 966–978. doi:10.1061/(asce)0733-9445(2005)131:6(966).
Moehle, J. (2015). Seismic Design of Reinforced Concrete Buildings. McGraw Hill, New York, United States.
Paulay, T., and Priestley, M. J. N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172841
Panagiotakos, T. B., & Fardis, M. N. (2001). Deformations of reinforced concrete members at yielding and ultimate. ACI Structural Journal, 98(2), 135–148. doi:10.14359/10181.
Berry, M. P., Lehman, D. E., & Lowes, L. N. (2008). Lumped-plasticity models for performance simulation of bridge columns. ACI Structural Journal, 105(3), 270–279. doi:10.14359/19786.
Gu, D. S., Wu, Y. F., Wu, G., & Wu, Z. S. (2012). Plastic hinge analysis of FRP confined circular concrete columns. Construction and Building Materials, 27(1), 223–233. doi:10.1016/j.conbuildmat.2011.07.056.
Youssf, O., ElGawady, M. A., & Mills, J. E. (2015). Displacement and plastic hinge length of FRP-confined circular reinforced concrete columns. Engineering Structures, 101, 465–476. doi:10.1016/j.engstruct.2015.07.026.
Pudjisuryadi, P., Tavio, & Suprobo, P. (2016). Axial compressive behavior of square concrete columns externally collared by light structural steel angle sections. International Journal of Applied Engineering Research, 11(7), 4655–4666.
ACI 374.1-05. (2014), Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary, American Concrete Institute, Michigan, United States.
Ou, Y.-C., Tsai, M.-S., Liu, K.-Y., & Chang, K.-C. (2012). Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index. Journal of Materials in Civil Engineering, 24(2), 207–215. doi:10.1061/(asce)mt.1943-5533.0000372.
Gkournelos, P. D., Triantafillou, T. C., & Bournas, D. A. (2021). Seismic upgrading of existing reinforced concrete buildings: A state-of-the-art review. Engineering Structures, 240, 112273. doi:10.1016/j.engstruct.2021.112273.
Sakai, K., & Sheikh, S. A. (1989). What do we know about confinement in reinforced concrete columns? (A critical review of previous work and code provisions). ACI Structural Journal, 86(2), 192–207. doi:10.14359/2705.
Tavio, Machmoed, S. P., & Raka, I. G. P. (2022). Behavior of Square RC Columns Confined with Interlocking Square Spiral Under Axial Compressive Loading. International Journal on Engineering Applications, 10(5), 322–335. doi:10.15866/irea.v10i5.20655.
Agustiar, Tavio, Raka, I. G. P., & Anggraini, R. (2018). Behavior of concrete columns reinforced and confined by high-strength steel bars. International Journal of Civil Engineering and Technology, 9(7), 1249–1257.
Sabariman, B., Soehardjono, A., Wisnumurti, W., Wibowo, A., & Tavio, T. (2018). Stress-strain behavior of steel fiber-reinforced concrete cylinders spirally confined with steel bars. Advances in Civil Engineering, 2018, 1–8. doi:10.1155/2018/6940532.
Soehardjono, A., Sabariman, B., Wisnumurti, & Wibowo, A. (2022). Contribution of Steel Fibers on Ductility of Confined Concrete Columns. International Journal of GEOMATE, 23(97), 188–195. doi:10.21660/2022.97.3483.
FEMA 356. (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Federal Emergency Management Agency, Washington, United States.
Wu, Y. F., & Jiang, C. (2014). Effect of confinement on plastic hinge length of RC square columns. 23rd Australasian Conf. on the Mechanics of Structures and Materials, 9-12 December, 2014, Southern Cross University, Byron Bay, Australia.
Sabariman, B., & Sofianto, M. F. (2017). Study of crack patterns in beam column joint due to upwards anchoring beam effect. AIP Conference Proceedings, 1855(040004), 1–8. doi:10.1063/1.4985500.
ASCE/SEI 41-06. (2007). Seismic Rehabilitation of Existing Buildings. American Society of Civil Engineers, Reston, United States.
SNI 2052:2017. (2017). Concrete Reinforcing Steel. Standard Nasional Indonesia, Jakarta, Indonesia. (in Indonesian).
Scott, B. D., Park, R., & Priestley, M. J. N. (1982). Stress-Strain Behavior of Concrete Confined By Overlapping Hoops At Low and High Strain Rates. Journal of the American Concrete Institute, 79(1), 13–27. doi:10.14359/10875.
Sabariman, B., Soehardjono, A., Wisnumurti, Wibowo, A., & Tavio. (2020). Stress-strain model for confined fiber-reinforced concrete under axial compression. Archives of Civil Engineering, 66(2), 119–133. doi:10.24425/ace.2020.131800.
Kusuma, B., and Tavio. (2008). Unified Stress-Strain Model for Confined Columns of Any Concrete and Steel Strengths. International Conference on Earthquake Engineering and Disaster Mitigation, 2008.
Machmoed, S. P., Tavio, & Raka, I. G. P. (2021). Performance of Square Reinforced Concrete Columns Confined With Innovative Confining System Under Axial Compression. International Journal of GEOMATE, 21(85), 137–144. doi:10.21660/2021.85.j2085.
MacHmoed, S. P., Tavio, T., & Raka, I. G. P. (2020). Potential of new innovative confinement for square reinforced concrete columns. Journal of Physics: Conference Series, 1469(1), 1–7. doi:10.1088/1742-6596/1469/1/012027.
Wibowo, A., Wilson, J. L., Lam, N. T., & Gad, E. F. (2014). Drift capacity of lightly reinforced concrete columns. Australian Journal of Structural Engineering, 15(2), 131-150. doi:10.7158/s13-002.2014.15.2
Harris, H., & Sabnis, G. (1999). Structural Modeling and Experimental Techniques, Second Edition. CRC Press, Boca Raton, United States. doi:10.1201/9781420049589.
Bae, S., & Bayrak, O. (2008). Plastic hinge length of reinforced concrete columns. ACI Structural Journal, 105(3), 290. doi:10.14359/19788
Ou, Y. C., Kurniawan, R. A., Kurniawan, D. P., & Nguyen, N. D. (2012). Plastic hinge length of circular reinforced concrete columns. Computers and Concrete, 10(6), 663–681. doi:10.12989/cac.2012.10.6.663.
DOI: 10.28991/CEJ-2024-010-05-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Bambang Sabariman
This work is licensed under a Creative Commons Attribution 4.0 International License.