Geopolymers: Enhancing Environmental Safety and Sustainability in Construction

Muhammad S. Aiman, Idris Othman, Ahsan Waqar, Nadhim Hamah Sor, Haytham F. Isleem, Hadee M. Najm, Omrane Benjeddou, Mohanad Muayad Sabri Sabri

Abstract


This study underscores the significant environmental advantages of geopolymer, notably its capacity for substantial CO2emission reduction and sustainable waste management by repurposing industrial by-products, enhancing the environmental safety in oil and gas projects. Central to our investigation is the identification and strategic overcoming of critical obstacles to the broader application of geopolymer, aiming to bridge the gap between its recognized potential and practical implementation in construction practices. Through a comprehensive analysis involving pilot, main, and validation surveys among construction industry professionals, we employed exploratory factor analysis (EFA) and structural equation modeling (SEM) to elucidate the relationships between various barriers and the success of geopolymer concrete applications. Our findings reveal that standards and knowledge significantly influence the adoption of geopolymer concrete, with an R² value of 0.873 indicating a high predictive utility of these constructs. The research underscores the critical need for enhanced support in research and development to improve geopolymer concrete's durability and performance over time. Significantly, this study contributes novel insights into overcoming the industry's hesitancy towards geopolymer concrete, highlighting its importance for sustainable construction practices and reducing the environmental footprint of building materials.

 

Doi: 10.28991/CEJ-2024-010-10-015

Full Text: PDF


Keywords


Geopolymer Concrete; Success in Construction; Building Industry; Barriers.

References


Zakka, W. P., Abdul Shukor Lim, N. H., & Chau Khun, M. (2021). A scientometric review of geopolymer concrete. Journal of Cleaner Production, 280. doi:10.1016/j.jclepro.2020.124353.

Ahmed, H. U., Mohammed, A. A., Rafiq, S., Mohammed, A. S., Mosavi, A., Sor, N. H., & Qaidi, S. M. A. (2021). Compressive strength of sustainable geopolymer concrete composites: A state-of-the-art review. Sustainability (Switzerland), 13(24), 13502. doi:10.3390/su132413502.

Nodehi, M., & Taghvaee, V. M. (2022). Alkali-Activated Materials and Geopolymer: a Review of Common Precursors and Activators Addressing Circular Economy. Circular Economy and Sustainability, 2(1), 165–196. doi:10.1007/s43615-021-00029-w.

Zaid, O., Abdulwahid S., N., Martínez-García, R., de Prado-Gil, J., Mohamed Elhadi, K., & Yosri, A. M. (2024). Sustainability evaluation, engineering properties and challenges relevant to geopolymer concrete modified with different nanomaterials: A systematic review. Ain Shams Engineering Journal, 15(2). doi:10.1016/j.asej.2023.102373.

Part, W. K., Ramli, M., & Cheah, C. B. (2015). An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Construction and Building Materials, 77, 370–395. doi:10.1016/j.conbuildmat.2014.12.065.

Ahmed, H. U., Mohammed, A. S., Faraj, R. H., Abdalla, A. A., Qaidi, S. M. A., Sor, N. H., & Mohammed, A. A. (2023). Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles. Neural Computing and Applications, 35(17), 12453–12479. doi:10.1007/s00521-023-08378-3.

Amin, M., Elsakhawy, Y., Abu el-hassan, K., & Abdelsalam, B. A. (2022). Behavior evaluation of sustainable high strength geopolymer concrete based on fly ash, metakaolin, and slag. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e00976.

Taher, S. M. S., Saadullah, S. T., Haido, J. H., & Tayeh, B. A. (2021). Behavior of geopolymer concrete deep beams containing waste aggregate of glass and limestone as a partial replacement of natural sand. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00744.

Sonal, T., Urmil, D., & Darshan, B. (2022). Behaviour of ambient cured prestressed and non-prestressed geopolymer concrete beams. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2021.e00798.

Noushini, A., Castel, A., Aldred, J., & Rawal, A. (2020). Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete. Cement and Concrete Composites, 105. doi:10.1016/j.cemconcomp.2019.04.006.

Amran, Y. H. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251. doi:10.1016/j.jclepro.2019.119679.

Wangler, T., & Flatt, R.J. (2019). Correction to: First RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2018. First RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2018, DC 2018, RILEM Bookseries, 19. Springer, Cham, Switzerland. doi:10.1007/978-3-319-99519-9_31.

Morla, P., Gupta, R., Azarsa, P., & Sharma, A. (2021). Corrosion evaluation of geopolymer concrete made with fly ash and bottom ash. Sustainability (Switzerland), 13(1), 1–16. doi:10.3390/su13010398.

Ahmed, H. U., Mohammed, A. S., Qaidi, S. M. A., Faraj, R. H., Hamah Sor, N., & Mohammed, A. A. (2022). Compressive strength of geopolymer concrete composites: a systematic comprehensive review, analysis and modeling. European Journal of Environmental and Civil Engineering, 27(3), 1383–1428. doi:10.1080/19648189.2022.2083022.

Wong, L. S. (2022). Durability Performance of Geopolymer Concrete: A Review. Polymers, 14(5). doi:10.3390/polym14050868.

Ali, I. M., Naje, A. S., & Nasr, M. S. (2020). Eco-friendly chopped tire rubber as reinforcements in fly ash based geopolymer concrete. Global Nest Journal, 22(3), 342–347. doi:10.30955/gnj.003192.

Driouich, A., El Hassani, S. A., S., N., Zmirli, Z., El harfaoui, S., Mydin, M. A. O., Aziz, A., Deifalla, A. F., & Chaair, H. (2023). Mix design optimization of metakaolin-slag-based geopolymer concrete synthesis using RSM. Results in Engineering, 20, 101573. doi:10.1016/j.rineng.2023.101573.

Ganesh, A. C., & Muthukannan, M. (2021). Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. Journal of Cleaner Production, 282. doi:10.1016/j.jclepro.2020.124543.

Li, W., Shumuye, E. D., Shiying, T., Wang, Z., & Zerfu, K. (2022). Eco-friendly fibre reinforced geopolymer concrete: A critical review on the microstructure and long-term durability properties. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e00894.

Ren, B., Zhao, Y., Bai, H., Kang, S., Zhang, T., & Song, S. (2021). Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere, 267. doi:10.1016/j.chemosphere.2020.128900.

Tayeh, B. A., Zeyad, A. M., Agwa, I. S., & Amin, M. (2021). Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00673.

Sikder, A., & Saha, P. (2021). Effect of different types of Waste as Binder on Durability Properties of Geopolymer Concrete: A Review. IOP Conference Series: Earth and Environmental Science, 796(1). doi:10.1088/1755-1315/796/1/012018.

Das, S. K., Singh, S. K., Mishra, J., & Mustakim, S. M. (2020). Effect of Rice Husk Ash and Silica Fume as Strength-Enhancing Materials on Properties of Modern Concrete—A Comprehensive Review. Emerging Trends in Civil Engineering. Lecture Notes in Civil Engineering, 61, Springer, Singapore. doi:10.1007/978-981-15-1404-3_21.

Zhang, H. Y., Kodur, V., Wu, B., Yan, J., & Yuan, Z. S. (2018). Effect of temperature on bond characteristics of geopolymer concrete. Construction and Building Materials, 163, 277–285. doi:10.1016/j.conbuildmat.2017.12.043.

Munir, Q., Abdulkareem, M., Horttanainen, M., & Kärki, T. (2023). A comparative cradle-to-gate life cycle assessment of geopolymer concrete produced from industrial side streams in comparison with traditional concrete. Science of the Total Environment, 865. doi:10.1016/j.scitotenv.2022.161230.

Lao, J. C., Xu, L. Y., Huang, B. T., Zhu, J. X., Khan, M., & Dai, J. G. (2023). Utilization of sodium carbonate activator in strain-hardening ultra-high-performance geopolymer concrete (SH-UHPGC). Frontiers in Materials, 10. doi:10.3389/fmats.2023.1142237.

Prasittisopin, L., & Sereewatthanawut, I. (2018). Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer. Frontiers of Structural and Civil Engineering, 12(1), 16–25. doi:10.1007/s11709-016-0373-7.

Tang, J., Liu, X., Chang, X., Ji, X., & Zhou, W. (2022). Elastic geopolymer based on nanotechnology: Synthesis, characterization, properties, and applications. Ceramics International, 48(5), 5965–5971. doi:10.1016/j.ceramint.2021.11.070.

Kejkar, R. B., & Wanjari, S. P. (2021). Feasibility study of commercially viable sustainable aerated geopolymeric foam based block. Materials Today: Proceedings, 45, 4398–4404. doi:10.1016/j.matpr.2020.11.916.

Kotop, M. A., El-Feky, M. S., Alharbi, Y. R., Abadel, A. A., & Binyahya, A. S. (2021). Engineering properties of geopolymer concrete incorporating hybrid nano-materials. Ain Shams Engineering Journal, 12(4), 3641–3647. doi:10.1016/j.asej.2021.04.022.

Kanagaraj, B., Anand, N., Samuvel Raj, R., & Lubloy, E. (2023). Techno-socio-economic aspects of Portland cement, Geopolymer, and Limestone Calcined Clay Cement (LC3) composite systems: A-State-of-Art-Review. Construction and Building Materials, 398. doi:10.1016/j.conbuildmat.2023.132484.

Jindal, B. B., Alomayri, T., Hasan, A., & Kaze, C. R. (2023). Geopolymer concrete with metakaolin for sustainability: a comprehensive review on raw material’s properties, synthesis, performance, and potential application. Environmental Science and Pollution Research, 30(10), 25299–25324. doi:10.1007/s11356-021-17849-w.

Hassan, A., Arif, M., Shariq, M., Alomayri, T., & Pereira, S. (2023). Fire resistance characteristics of geopolymer concrete for environmental sustainability: a review of thermal, mechanical and microstructure properties. Environment, Development and Sustainability, 25(9), 8975–9010. doi:10.1007/s10668-022-02495-0.

Nagaraju, T. V., Bahrami, A., Azab, M., & Naskar, S. (2023). Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass—A strength performance and sustainability analysis. Frontiers in Materials, 10. doi:10.3389/fmats.2023.1128095.

Abdalla, J. A., Hawileh, R. A., Bahurudeen, A., Jyothsna, G., Sofi, A., Shanmugam, V., & Thomas, B. S. (2023). A comprehensive review on the use of natural fibers in cement/geopolymer concrete: A step towards sustainability. Case Studies in Construction Materials, 19. doi:10.1016/j.cscm.2023.e02244.

Upshaw, M., & Cai, C. S. (2021). Feasibility study of MK-based geopolymer binder for RAC applications: Effects of silica fume and added CaO on compressive strength of mortar samples. Case Studies in Construction Materials, 14. doi:10.1016/j.cscm.2021.e00500.

Luhar, S., Nicolaides, D., & Luhar, I. (2021). Fire resistance behaviour of geopolymer concrete: An overview. Buildings, 11(3), 1–30. doi:10.3390/buildings11030082.

Guades, E. J., Stang, H., Schmidt, J. W., & Fischer, G. (2021). Flexural behavior of hybrid fibre-reinforced geopolymer composites (FRGC)-jacketed RC beams. Engineering Structures, 235. doi:10.1016/j.engstruct.2021.112053.

Ojha, A., & Aggarwal, P. (2022). Fly Ash Based Geopolymer Concrete: a Comprehensive Review. Silicon, 14(6), 2453–2472. doi:10.1007/s12633-021-01044-0.

Singh, N. B. (2018). Fly ash-based geopolymer binder: A future construction material. Minerals, 8(7). doi:10.3390/min8070299.

Pandit, P., Prashanth, S., & Katpady, D. N. (2024). Durability of alkali-activated fly ash-slag concrete-state of art. Innovative Infrastructure Solutions, 9(6), 1-21. doi:10.1007/s41062-024-01530-5.

Chen, K., Wu, D., Xia, L., Cai, Q., & Zhang, Z. (2021). Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279. doi:10.1016/j.conbuildmat.2021.122496.

Ye, G., Luković, M., Ghiassi, B., Aldin, Z., Prinsse, S., Liu, J., Nedeljković, M., Hordijk, D., Lagendijk, P., Bosman, A., Blom, T., van Leeuwen, M., Huang, Z., Celada, U., Du, C., van den Berg, J., Thijssen, A., & Wijte, S. (2019). Geocon bridge geopolymer concrete mixture for structural applications. Spool, 6(2), 21–26. doi:10.7480/spool.2019.2.4369.

Pawluczuk, E., Kalinowska-Wichrowska, K., Jiménez, J. R., Fernández-Rodríguez, J. M., & Suescum-Morales, D. (2021). Geopolymer concrete with treated recycled aggregates: Macro and microstructural behavior. Journal of Building Engineering, 44. doi:10.1016/j.jobe.2021.103317.

Ramesh, G. (2021). Geopolymer Concrete: A Review. Indian Journal of Structure Engineering, 1(2), 5–8. doi:10.35940/ijse.a1302.111221.

Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. doi:10.1016/j.conbuildmat.2015.03.036.

Neupane, K. (2018). High-Strength Geopolymer Concrete- Properties, Advantages and Challenges. Advances in Materials, 7(2), 15. doi:10.11648/j.am.20180702.11.

Liew, K. M., Sojobi, A. O., & Zhang, L. W. (2017). Green concrete: Prospects and challenges. Construction and Building Materials, 156, 1063–1095. doi:10.1016/j.conbuildmat.2017.09.008.

Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials, 56, 113–127. doi:10.1016/j.conbuildmat.2014.01.081.

Biondi, L., Perry, M., McAlorum, J., Vlachakis, C., & Hamilton, A. (2020). Geopolymer-based moisture sensors for reinforced concrete health monitoring. Sensors and Actuators, B: Chemical, 309. doi:10.1016/j.snb.2020.127775.

Ganeshan, M., & Venkataraman, S. (2022). Interface shear strength evaluation of self compacting geopolymer concrete using push-off test. Journal of King Saud University - Engineering Sciences, 34(2), 98–107. doi:10.1016/j.jksues.2020.08.005.

Khedmati, M., Kim, Y. R., & Turner, J. A. (2019). Investigation of the interphase between recycled aggregates and cementitious binding materials using integrated microstructural-nanomechanical-chemical characterization. Composites Part B: Engineering, 158, 218–229. doi:10.1016/j.compositesb.2018.09.041.

Karthik, A., Sudalaimani, K., & Vijaya Kumar, C. T. (2017). Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self-curing bio-geopolymer concrete. Construction and Building Materials, 149, 338–349. doi:10.1016/j.conbuildmat.2017.05.139.

Aravind, N., Nagajothi, S., & Elavenil, S. (2021). Machine learning model for predicting the crack detection and pattern recognition of geopolymer concrete beams. Construction and Building Materials, 297. doi:10.1016/j.conbuildmat.2021.123785.

Ban, C. C., Khalaf, M. A., Ramli, M., Ahmed, N. M., Ahmad, M. S., Ahmed Ali, A. M., Dawood, E. T., & Ameri, F. (2021). Modern heavyweight concrete shielding: Principles, industrial applications and future challenges; review. Journal of Building Engineering, 39. doi:10.1016/j.jobe.2021.102290.

Li, W., Luo, Z., Gan, Y., Wang, K., & Shah, S. P. (2021). Nanoscratch on mechanical properties of interfacial transition zones (ITZs) in fly ash-based geopolymer composites. Composites Science and Technology, 214. doi:10.1016/j.compscitech.2021.109001.

Walbrück, K., Maeting, F., Witzleben, S., & Stephan, D. (2020). Natural fiber-stabilized geopolymer foams-A review. Materials, 13(14). doi:10.3390/ma13143198.

Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials, 15. doi:10.1016/j.cscm.2021.e00733.

Aly, A. M., El-Feky, M. S., Kohail, M., & Nasr, E. S. A. R. (2019). Performance of geopolymer concrete containing recycled rubber. Construction and Building Materials, 207, 136–144. doi:10.1016/j.conbuildmat.2019.02.121.

Dhasindrakrishna, K., Pasupathy, K., Ramakrishnan, S., & Sanjayan, J. (2021). Progress, current thinking and challenges in geopolymer foam concrete technology. Cement and Concrete Composites, 116. doi:10.1016/j.cemconcomp.2020.103886.

Mohajerani, A., Suter, D., Jeffrey-Bailey, T., Song, T., Arulrajah, A., Horpibulsuk, S., & Law, D. (2019). Recycling waste materials in geopolymer concrete. Clean Technologies and Environmental Policy, 21(3), 493–515. doi:10.1007/s10098-018-01660-2.

Mesgari, S., Akbarnezhad, A., & Xiao, J. Z. (2020). Recycled geopolymer aggregates as coarse aggregates for Portland cement concrete and geopolymer concrete: Effects on mechanical properties. Construction and Building Materials, 236. doi:10.1016/j.conbuildmat.2019.117571.

Xu, Z., Huang, Z., Liu, C., Deng, H., Deng, X., Hui, D., Zhang, X., & Bai, Z. (2021). Research progress on key problems of nanomaterials-modified geopolymer concrete. Nanotechnology Reviews, 10(1), 779–792. doi:10.1515/ntrev-2021-0056.

Luhar, S., Luhar, I., & Shaikh, F. U. A. (2021). Review on performance evaluation of autonomous healing of geopolymer composites. Infrastructures, 6(7). doi:10.3390/infrastructures6070094.

Tempest, B., Snell, C., Gentry, T., Trejo, M., & Isherwood, K. (2015). Manufacture of full-scale geopolymer cement concrete components: A case study to highlight opportunities and challenges. PCI Journal, 60(6), 39–50. doi:10.15554/pcij.11012015.39.50.

Liang, X., & Ji, Y. (2021). Mechanical properties and permeability of red mud-blast furnace slag-based geopolymer concrete. SN Applied Sciences, 3(1). doi:10.1007/s42452-020-03985-4.

Liu, C., Huang, X., Wu, Y. Y., Deng, X., Liu, J., Zheng, Z., & Hui, D. (2020). Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnology Reviews, 9(1), 155–169. doi:10.1515/ntrev-2020-0014.

Siddika, A., Hajimohammadi, A., Ferdous, W., & Sahajwalla, V. (2021). Roles of waste glass and the effect of process parameters on the properties of sustainable cement and geopolymer concrete—a state-of-the-art review. Polymers, 13(22). doi:10.3390/polym13223935.

Zhang, H. Y., Qiu, G. H., Kodur, V., & Yuan, Z. S. (2020). Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure. Cement and Concrete Composites, 106. doi:10.1016/j.cemconcomp.2019.103483.

Figiela, B., Šimonová, H., & Korniejenko, K. (2022). State of the art, challenges, and emerging trends: Geopolymer composite reinforced by dispersed steel fibers. Reviews on Advanced Materials Science, 61(1), 1–15. doi:10.1515/rams-2021-0067.

Ma, C. K., Awang, A. Z., & Omar, W. (2018). Structural and material performance of geopolymer concrete: A review. Construction and Building Materials, 186, 90–102. doi:10.1016/j.conbuildmat.2018.07.111.

Hardjasaputra, H., Cornelia, M., Gunawan, Y., Surjaputra, I. V., Lie, H. A., Rachmansyah, & Pranata Ng, G. (2019). Study of mechanical properties of fly ash-based geopolymer concrete. IOP Conference Series: Materials Science and Engineering, 615(1), 012009. doi:10.1088/1757-899X/615/1/012009.

Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2016). Structural performance of reinforced geopolymer concrete members: A review. Construction and Building Materials, 120, 251–264. doi:10.1016/j.conbuildmat.2016.05.088.

Siddika, A., Hajimohammadi, A., Mamun, M. A. Al, Alyousef, R., & Ferdous, W. (2021). Waste glass in cement and geopolymer concretes: A review on durability and challenges. Polymers, 13(13), 2071. doi:10.3390/polym13132071.

Luhar, I., & Luhar, S. (2021). Valorization of geopolymer paste containing wastes glass. Research on Engineering Structures and Materials, 7(4), 481–504. doi:10.17515/resm2020.240st1213.

Antoni, A., Shenjaya, S. D., Lupita, M., Santosa, S., Wiyono, D., & Hardjito, D. (2020). Utilization of low sulfur fly ash from circulating fluidized bed combustion burner as geopolymer binder. Civil Engineering Dimension, 22(2), 94–100. doi:10.9744/ced.22.2.93-97.

Shi, J., Liu, Y., Xu, H., Peng, Y., Yuan, Q., & Gao, J. (2022). The roles of cenosphere in ultra-lightweight foamed geopolymer concrete (UFGC). Ceramics International, 48(9), 12884–12896. doi:10.1016/j.ceramint.2022.01.161.

Hassan, A., Arif, M., & Shariq, M. (2019). Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure. Journal of Cleaner Production, 223, 704–728. doi:10.1016/j.jclepro.2019.03.051.

Panda, B., Singh, G. B., Unluer, C., & Tan, M. J. (2019). Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. Journal of Cleaner Production, 220, 610–619. doi:10.1016/j.jclepro.2019.02.185.

Beskopylny, A. N., Shcherban’, E. M., Stel’makh, S. A., Mailyan, L. R., Meskhi, B., & El’shaeva, D. (2022). The Influence of Composition and Recipe Dosage on the Strength Characteristics of New Geopolymer Concrete with the Use of Stone Flour. Applied Sciences (Switzerland), 12(2), 613. doi:10.3390/app12020613.

Sajjad, M., Hu, A., Waqar, A., Falqi, I. I., Alsulamy, S. H., Bageis, A. S., & Alshehri, A. M. (2023). Evaluation of the Success of Industry 4.0 Digitalization Practices for Sustainable Construction Management: Chinese Construction Industry. Buildings, 13(7), 1668. doi:10.3390/buildings13071668.

Waqar, A., Skrzypkowski, K., Almujibah, H., Zagórski, K., Khan, M. B., Zagórska, A., & Benjeddou, O. (2023). Success of Implementing Cloud Computing for Smart Development in Small Construction Projects. Applied Sciences (Switzerland), 13(9), 5713. doi:10.3390/app13095713.

Waqar, A., Othman, I., Skrzypkowski, K., & Ghumman, A. S. M. (2023). Evaluation of Success of Superhydrophobic Coatings in the Oil and Gas Construction Industry Using Structural Equation Modeling. Coatings, 13(3), 526. doi:10.3390/coatings13030526.

Waqar, A., Othman, I., Falqi, I. I., Almujibah, H. R., Alshehri, A. M., Alsulamy, S. H., & Benjeddou, O. (2023). Assessment of Barriers to Robotics Process Automation (RPA) Implementation in Safety Management of Tall Buildings. Buildings, 13(7), 1663. doi:10.3390/buildings13071663.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-10-015

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Ahsan Waqar, Idris Othman, Omrane Benjeddou, Nadhim Hamah Sor, Fadi Althoey, Haytham F. Isleem, Hammad Alumjibah, Ahmed Farouk Deifalla

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message