Evaluating the Impact of Material Selections, Mixing Techniques, and On-site Practices on Performance of Concrete Mixtures

Fadoua Hattani, Bruce Menu, Driss Allaoui, Mustapha Mouflih, Hassan Zanzoun, Hassan Hannache, Bouchaib Manoun


This paper aims to evaluate the influence of sand quality, water-to-cement ratio, binder properties, mix design methods, and mixing techniques on the fresh and hardened properties of concrete. The physicochemical characteristics of coarse aggregates, sands, and binders were analyzed. The experimental results show that the binders and coarse aggregates met standard specifications. However, none of the sands meet construction standards. Corrections were necessary for the dune sands to meet construction standards in terms of grain size distribution and fineness modulus. The results also show that the concretes formulated using the Dreux-Gorisse method exhibited higher quality than the locally formulated concretes. Furthermore, it was found that hand mixing resulted in inadequate mixing, material wastage, lower strength, and increased porosity, whereas machine mixing produced concretes with a more homogeneous microstructure, uniform particle distribution, lower porosity, and higher strength. The batch variability and compressive strength of the hand-mixed concretes were also found to be influenced by the expertise level of the batch mixer and the number of successive hand batches. It was also found that both the soluble silica and the inert methods are reliable for determining binder content in machine-mixed concrete. However, the soluble silica method occasionally exhibited significant variations in hand-mixed concrete compared to the inert method. A combined approach utilizing the average of both methods enhances the overall reliability of the binder content values. Observations on construction sites revealed widespread deviations from recommended guidelines. Issues such as lack of material inspection, proper stockpiling, ingredient contamination, and inadequate batch mixing contributed to variations in concrete workability, porosity, and compressive strength.


Doi: 10.28991/CEJ-2024-010-02-016

Full Text: PDF


Sand Quality; Dreux-Gorisse Method; Corrected Sand; Hand Mixing; Machine Mixing; Construction Site.


PCA. (1975). Concrete inspection procedures. Portland Cement Association, John Wiley & Sons, Hoboken, United States.

Aïssoun, B. M., Hwang, S.-D., & Khayat, K. H. (2015). Influence of aggregate characteristics on workability of super workable concrete. Materials and Structures, 49(1–2), 597–609. doi:10.1617/s11527-015-0522-9.

Meddah, M. S., Zitouni, S., & Belâabes, S. (2010). Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Construction and Building Materials, 24(4), 505–512. doi:10.1016/j.conbuildmat.2009.10.009.

Tutu, K. A., Odei, D. A., Baniba, P., & Owusu, M. (2022). Concrete quality issues in multistory building construction in Ghana: Cases from Kumasi metropolis. Case Studies in Construction Materials, 17, e01425. doi:10.1016/j.cscm.2022.e01425.

Alsayed, S. H., & Amjad, M. A. (1996). Strength, Water Absorption and Porosity of Concrete Incorporating Natural and Crushed Aggregate. Journal of King Saud University - Engineering Sciences, 8(1), 109–119. doi:10.1016/s1018-3639(18)30642-1.

Sabih, G., Tarefder, R. A., & Jamil, S. M. (2016). Optimization of Gradation and Fineness Modulus of Naturally Fine Sands for Improved Performance as Fine Aggregate in Concrete. Procedia Engineering, 145, 66–73. doi:10.1016/j.proeng.2016.04.016.

Olonade, K. A., Ajibola, I. K., & Okeke, C. L. (2018). Performance evaluation of concrete made with sands from selected locations in Osun State, Nigeria. Case Studies in Construction Materials, 8, 160–171. doi:10.1016/j.cscm.2018.01.008.

Konitufe, C., ABUBAKAR, A., & Sabo Baba, A. (2023). Influence of Aggregate Size and Shape on the Compressive Strength of Concrete. Construction, 3(1), 15–22. doi:10.15282/construction.v3i1.9075.

Boateng, F. G. (2020). Building collapse in cities in Ghana: A case for a historical-institutional grounding for building risks in developing countries. International Journal of Disaster Risk Reduction, 50, 101912. doi:10.1016/j.ijdrr.2020.101912.

Vouffo, M., Tiomo, I. F., Fanmi, H. K., Djoumen, T. K., & Ngapgue, F. (2022). Physical and mechanical characterization of pyroclastic materials in Baleng area (Bafoussam, West-Cameroon): implication for use in civil engineering. Case Studies in Construction Materials, 16, e00916. doi:10.1016/j.cscm.2022.e00916.

Schmidt, W., Msinjili, N. S., & Kühne, H.-C. (2018). Materials and technology solutions to tackle the challenges in daily concrete construction for housing and infrastructure in sub-Saharan Africa. African Journal of Science, Technology, Innovation and Development, 11(4), 401–415. doi:10.1080/20421338.2017.1380582.

Al-Harthy, A. S., Halim, M. A., Taha, R., & Al-Jabri, K. S. (2007). The properties of concrete made with fine dune sand. Construction and Building Materials, 21(8), 1803–1808. doi:10.1016/j.conbuildmat.2006.05.053.

Ahmad, J., Majdi, A., Deifalla, A. F., Qureshi, H. J., Saleem, M. U., Qaidi, S. M. A., & El-Shorbagy, M. A. (2022). Concrete Made with Dune Sand: Overview of Fresh, Mechanical and Durability Properties. Materials, 15(17), 6152. doi:10.3390/ma15176152.

Luo, X., Xing, G., Qiao, L., Miao, P., Yu, X., & Ma, K. (2023). Multi-objective optimization of the mix proportion for dune sand concrete based on response surface methodology. Construction and Building Materials, 366, 129928. doi:10.1016/j.conbuildmat.2022.129928.

Khelil, N., Ould Ouali, M., & Meziane, L. (2023). On the use of fine dune sand in Reactive Powder Concrete: Effect on resistance, water absorption and UPV properties. Construction and Building Materials, 388, 131684. doi:10.1016/j.conbuildmat.2023.131684.

Bawab, J., El-Hassan, H., El-Dieb, A., & Khatib, J. (2023). Effect of Mix design parameters on the properties of cementitious composites incorporating volcanic ash and dune sand. Developments in the Built Environment, 16, 100258. doi:10.1016/j.dibe.2023.100258.

Han, D., & Ferron, R. D. (2015). Effect of mixing method on microstructure and rheology of cement paste. Construction and Building Materials, 93, 278–288. doi:10.1016/j.conbuildmat.2015.05.124.

Juilland, P., Kumar, A., Gallucci, E., Flatt, R. J., & Scrivener, K. L. (2012). Effect of mixing on the early hydration of alite and OPC systems. Cement and Concrete Research, 42(9), 1175–1188. doi:10.1016/j.cemconres.2011.06.011.

Olusola, K. O., Babafemi, A. J., Umoh, A. A., & Olawuyi, B. J. (2012). Effect of Batching Method on the Fresh and Hardened Properties of Concrete. International Journal of Recent Research and Applied Studies, 13(3), 773-779.

Hedidor, D., & Bondinuba, F. K. (2017). Exploring concrete materials batching behaviour of artisans in Ghana’s informal construction sector. Journal of Civil Engineering and Construction Technology, 8(5), 35–52. doi:10.5897/jcect2017.0439.

Aguwa, J. I. (2010). Effect of hand mixing on the compressive strength of concrete. Leonardo Electronic Journal of Practices and Technologies, 17, 59-68.

DGM. (2023). Morocco, state of the Climate in 2022. Direction générale de la météorologie (DGM), Casablanca, Maroc. (In French).

NM 10.1.004. (2003). Hydraulic binders and cement compositions. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.

NM EN 933-1. (2012). Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.

NM EN 12620. (2012). Aggregates for concrete. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.

NM EN 1097-6. (2013). Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.

NM EN 933-8. (2015). Tests for geometrical properties of aggregates - Part 8: Assessment of fines - Sand equivalent test. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.

NM EN 933-9. (2013). Tests for geometrical properties of aggregates - Part 9: Assessment of fines - Methylene blue test. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.

NM EN 1744-1. (2013). Tests for chemical properties of aggregates - Part 1: Chemical analysis. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.

NM 10.1.004. (2008). Hydraulic binders – Testing techniques. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.

ASTM C33/C33M-18. (2023). Standard specification for concrete aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.

Dreux, G. and Festa, J. (1998). New guide to concrete and its constituents, 8ème édition, Eyrolles, Collection Blanche, Paris, France. (In French).

NM EN 933-3. (2012). Tests for geometrical properties of aggregates - Part 3: Determination of particle shape - Flakiness index. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.

NM EN 1097-2. (2020). Tests for mechanical and physical properties of aggregates - Part 2: Methods for the determination of resistance to fragmentation. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.

NM 10.1.353. (2009). Concrete mixing water: Specifications for sampling, testing and evaluation of suitability of use, including process water from the concrete industry. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.

NM 10.1.008. (2008). Concrete: Specification, performance, production and compliance. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.

EN 206-1. (2000). Concrete. Part 1: Specification, performance, production and conformity. European Committee for Standardization (CEN), Brussels, Belgium.

NF EN 12350-2. (2009). Testing fresh concrete - Part 2: Slump test. Association Française de Normalisation (AFNOR), Paris, France.

ASTM C1064/1064M. (2017). Standard Test Method for Temperature of Freshly Mixed Hydraulic Cement Concrete. ASTM International, Pennsylvania, United States.

NF EN 12350-6. (2009). Testing fresh concrete - Part 6: Density. Association Française de Normalisation (AFNOR), Paris, France.

NF EN 12350-7. (2009). Testing fresh concrete - Part 7: Air content-pressure methods. Association Française de Normalisation (AFNOR), Paris, France.

ASTM C231/231M-10. (2014). Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method. ASTM International, Pennsylvania, United States. doi:10.1520/C0231_C0231M-10.

NF EN 12390-3. (2019). Testing hardened concrete - Part 3: Compressive strength of test specimens. Association Française de Normalisation (AFNOR), Paris, France.

NF P18-459. (2010). Test for hardened concrete: Porosity and density test. Association Française de Normalisation (AFNOR), Paris, France.

Villain, G., Thiery, M., & Platret, G. (2007). Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cement and Concrete Research, 37(8), 1182–1192. doi:10.1016/j.cemconres.2007.04.015.

Hornain, H. (2007). GranDuBé: quantities associated with the durability of concrete. Presses des Ponts, Paris, France. (In French).

NM 10.1.813. (2018). Aggregates - Definitions, compliance and codification. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco. (In French).

Akhtar, M. N., Jameel, M., Ibrahim, Z., Muhamad Bunnori, N., & Bani-Hani, K. A. (2024). Development of sustainable modified sand concrete: An experimental study. Ain Shams Engineering Journal, 15(1), 102331. doi:10.1016/j.asej.2023.102331.

Singh, J., Mukherjee, A., Dhiman, V. K., & Deepmala. (2021). Impact of crushed limestone dust on concrete’s properties. Materials Today: Proceedings, 43, 341–347. doi:10.1016/j.matpr.2020.11.674.

ACI 305.1-14. (2014). Guide to Hot Weather Concreting. American Concrete Institute (ACI), Farmington Hills, United States.

Wassermann, R., Katz, A., & Bentur, A. (2008). Minimum cement content requirements: a must or a myth? Materials and Structures, 42(7), 973–982. doi:10.1617/s11527-008-9436-0.

Menu, B., Pepin Beaudet, A., Jolin, M., & Bissonnette, B. (2022). Experimental study on the effect of key mix design parameters on shrinkage and cracking resistance of dry-mix shotcrete. Construction and Building Materials, 320, 126216. doi:10.1016/j.conbuildmat.2021.126216.

Yaman, I. O., Hearn, N., & Aktan, H. M. (2002). Active and non-active porosity in concrete Part I: Experimental evidence. Materials and Structures, 35(2), 102–109. doi:10.1007/bf02482109.

Minister of Economy and Finance. (2017). Specification of general technical clauses applicable to public contracts for civil engineering works. Booklet No. 65, Execution of Concrete Civil Engineering Works. (In French).

Zingg, L. (2013). Influence of porosity and the degree of internal humidity on the triaxial behavior of concrete. Ph.D. Thesis, University of Grenoble, Saint-Martin-d’Hères, France.

Menu, B., Jacob-Vaillancourt, T., Jolin, M., & Bissonnette, B. (2020). Influence of Curing Methods on Moisture Loss and Drying Shrinkage of Shotcrete at Early Age. ACI Materials Journal, 117(4). doi:10.14359/51724624.

ILO. (2016). Workplace Stress: A collective challenge. International Labour Organization, Geneva, Switzerland. Available online: https://www.ilo.org/wcmsp5/groups/public/---ed_protect/---protrav/---safework/documents/publication/wcms_466547.pdf (accessed on August 2023).

BLS. (2021). Census of fatal occupational injuries in 2021. U.S. Bureau of Labor Statistics, Washington, United States. Available online: https://www.bls.gov/news.release/pdf/cfoi.pdf (accessed on August 2023).

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-02-016


  • There are currently no refbacks.

Copyright (c) 2024 Fadoua Hattani, Bruce Menu, Driss Allaoui, Mustapha Mouflih, Hassan Zanzoun, Hassan Hannache, Bouchaib Manoun

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.