Evaluating the Impact of Material Selections, Mixing Techniques, and On-site Practices on Performance of Concrete Mixtures
Downloads
Doi: 10.28991/CEJ-2024-010-02-016
Full Text: PDF
Downloads
[2] Aí¯ssoun, B. M., Hwang, S.-D., & Khayat, K. H. (2015). Influence of aggregate characteristics on workability of super workable concrete. Materials and Structures, 49(1–2), 597–609. doi:10.1617/s11527-015-0522-9.
[3] Meddah, M. S., Zitouni, S., & Belí¢abes, S. (2010). Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Construction and Building Materials, 24(4), 505–512. doi:10.1016/j.conbuildmat.2009.10.009.
[4] Tutu, K. A., Odei, D. A., Baniba, P., & Owusu, M. (2022). Concrete quality issues in multistory building construction in Ghana: Cases from Kumasi metropolis. Case Studies in Construction Materials, 17, e01425. doi:10.1016/j.cscm.2022.e01425.
[5] Alsayed, S. H., & Amjad, M. A. (1996). Strength, Water Absorption and Porosity of Concrete Incorporating Natural and Crushed Aggregate. Journal of King Saud University - Engineering Sciences, 8(1), 109–119. doi:10.1016/s1018-3639(18)30642-1.
[6] Sabih, G., Tarefder, R. A., & Jamil, S. M. (2016). Optimization of Gradation and Fineness Modulus of Naturally Fine Sands for Improved Performance as Fine Aggregate in Concrete. Procedia Engineering, 145, 66–73. doi:10.1016/j.proeng.2016.04.016.
[7] Olonade, K. A., Ajibola, I. K., & Okeke, C. L. (2018). Performance evaluation of concrete made with sands from selected locations in Osun State, Nigeria. Case Studies in Construction Materials, 8, 160–171. doi:10.1016/j.cscm.2018.01.008.
[8] Konitufe, C., ABUBAKAR, A., & Sabo Baba, A. (2023). Influence of Aggregate Size and Shape on the Compressive Strength of Concrete. Construction, 3(1), 15–22. doi:10.15282/construction.v3i1.9075.
[9] Boateng, F. G. (2020). Building collapse in cities in Ghana: A case for a historical-institutional grounding for building risks in developing countries. International Journal of Disaster Risk Reduction, 50, 101912. doi:10.1016/j.ijdrr.2020.101912.
[10] Vouffo, M., Tiomo, I. F., Fanmi, H. K., Djoumen, T. K., & Ngapgue, F. (2022). Physical and mechanical characterization of pyroclastic materials in Baleng area (Bafoussam, West-Cameroon): implication for use in civil engineering. Case Studies in Construction Materials, 16, e00916. doi:10.1016/j.cscm.2022.e00916.
[11] Schmidt, W., Msinjili, N. S., & Kühne, H.-C. (2018). Materials and technology solutions to tackle the challenges in daily concrete construction for housing and infrastructure in sub-Saharan Africa. African Journal of Science, Technology, Innovation and Development, 11(4), 401–415. doi:10.1080/20421338.2017.1380582.
[12] Al-Harthy, A. S., Halim, M. A., Taha, R., & Al-Jabri, K. S. (2007). The properties of concrete made with fine dune sand. Construction and Building Materials, 21(8), 1803–1808. doi:10.1016/j.conbuildmat.2006.05.053.
[13] Ahmad, J., Majdi, A., Deifalla, A. F., Qureshi, H. J., Saleem, M. U., Qaidi, S. M. A., & El-Shorbagy, M. A. (2022). Concrete Made with Dune Sand: Overview of Fresh, Mechanical and Durability Properties. Materials, 15(17), 6152. doi:10.3390/ma15176152.
[14] Luo, X., Xing, G., Qiao, L., Miao, P., Yu, X., & Ma, K. (2023). Multi-objective optimization of the mix proportion for dune sand concrete based on response surface methodology. Construction and Building Materials, 366, 129928. doi:10.1016/j.conbuildmat.2022.129928.
[15] Khelil, N., Ould Ouali, M., & Meziane, L. (2023). On the use of fine dune sand in Reactive Powder Concrete: Effect on resistance, water absorption and UPV properties. Construction and Building Materials, 388, 131684. doi:10.1016/j.conbuildmat.2023.131684.
[16] Bawab, J., El-Hassan, H., El-Dieb, A., & Khatib, J. (2023). Effect of Mix design parameters on the properties of cementitious composites incorporating volcanic ash and dune sand. Developments in the Built Environment, 16, 100258. doi:10.1016/j.dibe.2023.100258.
[17] Han, D., & Ferron, R. D. (2015). Effect of mixing method on microstructure and rheology of cement paste. Construction and Building Materials, 93, 278–288. doi:10.1016/j.conbuildmat.2015.05.124.
[18] Juilland, P., Kumar, A., Gallucci, E., Flatt, R. J., & Scrivener, K. L. (2012). Effect of mixing on the early hydration of alite and OPC systems. Cement and Concrete Research, 42(9), 1175–1188. doi:10.1016/j.cemconres.2011.06.011.
[19] Olusola, K. O., Babafemi, A. J., Umoh, A. A., & Olawuyi, B. J. (2012). Effect of Batching Method on the Fresh and Hardened Properties of Concrete. International Journal of Recent Research and Applied Studies, 13(3), 773-779.
[20] Hedidor, D., & Bondinuba, F. K. (2017). Exploring concrete materials batching behaviour of artisans in Ghana's informal construction sector. Journal of Civil Engineering and Construction Technology, 8(5), 35–52. doi:10.5897/jcect2017.0439.
[21] Aguwa, J. I. (2010). Effect of hand mixing on the compressive strength of concrete. Leonardo Electronic Journal of Practices and Technologies, 17, 59-68.
[22] DGM. (2023). Morocco, state of the Climate in 2022. Direction générale de la météorologie (DGM), Casablanca, Maroc. (In French).
[23] NM 10.1.004. (2003). Hydraulic binders and cement compositions. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.
[24] NM EN 933-1. (2012). Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.
[25] NM EN 12620. (2012). Aggregates for concrete. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.
[26] NM EN 1097-6. (2013). Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.
[27] NM EN 933-8. (2015). Tests for geometrical properties of aggregates - Part 8: Assessment of fines - Sand equivalent test. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.
[28] NM EN 933-9. (2013). Tests for geometrical properties of aggregates - Part 9: Assessment of fines - Methylene blue test. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.
[29] NM EN 1744-1. (2013). Tests for chemical properties of aggregates - Part 1: Chemical analysis. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.
[30] NM 10.1.004. (2008). Hydraulic binders – Testing techniques. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.
[31] ASTM C33/C33M-18. (2023). Standard specification for concrete aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
[32] Dreux, G. and Festa, J. (1998). New guide to concrete and its constituents, 8ème édition, Eyrolles, Collection Blanche, Paris, France. (In French).
[33] NM EN 933-3. (2012). Tests for geometrical properties of aggregates - Part 3: Determination of particle shape - Flakiness index. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.
[34] NM EN 1097-2. (2020). Tests for mechanical and physical properties of aggregates - Part 2: Methods for the determination of resistance to fragmentation. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.
[35] NM 10.1.353. (2009). Concrete mixing water: Specifications for sampling, testing and evaluation of suitability of use, including process water from the concrete industry. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.
[36] NM 10.1.008. (2008). Concrete: Specification, performance, production and compliance. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco.
[37] EN 206-1. (2000). Concrete. Part 1: Specification, performance, production and conformity. European Committee for Standardization (CEN), Brussels, Belgium.
[38] NF EN 12350-2. (2009). Testing fresh concrete - Part 2: Slump test. Association Française de Normalisation (AFNOR), Paris, France.
[39] ASTM C1064/1064M. (2017). Standard Test Method for Temperature of Freshly Mixed Hydraulic Cement Concrete. ASTM International, Pennsylvania, United States.
[40] NF EN 12350-6. (2009). Testing fresh concrete - Part 6: Density. Association Française de Normalisation (AFNOR), Paris, France.
[41] NF EN 12350-7. (2009). Testing fresh concrete - Part 7: Air content-pressure methods. Association Française de Normalisation (AFNOR), Paris, France.
[42] ASTM C231/231M-10. (2014). Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method. ASTM International, Pennsylvania, United States. doi:10.1520/C0231_C0231M-10.
[43] NF EN 12390-3. (2019). Testing hardened concrete - Part 3: Compressive strength of test specimens. Association Française de Normalisation (AFNOR), Paris, France.
[44] NF P18-459. (2010). Test for hardened concrete: Porosity and density test. Association Française de Normalisation (AFNOR), Paris, France.
[45] Villain, G., Thiery, M., & Platret, G. (2007). Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cement and Concrete Research, 37(8), 1182–1192. doi:10.1016/j.cemconres.2007.04.015.
[46] Hornain, H. (2007). GranDuBé: quantities associated with the durability of concrete. Presses des Ponts, Paris, France. (In French).
[47] NM 10.1.813. (2018). Aggregates - Definitions, compliance and codification. Institut Marocain de Normalisation (IMANOR), Rabat, Morocco. (In French).
[48] Akhtar, M. N., Jameel, M., Ibrahim, Z., Muhamad Bunnori, N., & Bani-Hani, K. A. (2024). Development of sustainable modified sand concrete: An experimental study. Ain Shams Engineering Journal, 15(1), 102331. doi:10.1016/j.asej.2023.102331.
[49] Singh, J., Mukherjee, A., Dhiman, V. K., & Deepmala. (2021). Impact of crushed limestone dust on concrete's properties. Materials Today: Proceedings, 43, 341–347. doi:10.1016/j.matpr.2020.11.674.
[50] ACI 305.1-14. (2014). Guide to Hot Weather Concreting. American Concrete Institute (ACI), Farmington Hills, United States.
[51] Wassermann, R., Katz, A., & Bentur, A. (2008). Minimum cement content requirements: a must or a myth? Materials and Structures, 42(7), 973–982. doi:10.1617/s11527-008-9436-0.
[52] Menu, B., Pepin Beaudet, A., Jolin, M., & Bissonnette, B. (2022). Experimental study on the effect of key mix design parameters on shrinkage and cracking resistance of dry-mix shotcrete. Construction and Building Materials, 320, 126216. doi:10.1016/j.conbuildmat.2021.126216.
[53] Yaman, I. O., Hearn, N., & Aktan, H. M. (2002). Active and non-active porosity in concrete Part I: Experimental evidence. Materials and Structures, 35(2), 102–109. doi:10.1007/bf02482109.
[54] Minister of Economy and Finance. (2017). Specification of general technical clauses applicable to public contracts for civil engineering works. Booklet No. 65, Execution of Concrete Civil Engineering Works. (In French).
[55] Zingg, L. (2013). Influence of porosity and the degree of internal humidity on the triaxial behavior of concrete. Ph.D. Thesis, University of Grenoble, Saint-Martin-d'Hères, France.
[56] Menu, B., Jacob-Vaillancourt, T., Jolin, M., & Bissonnette, B. (2020). Influence of Curing Methods on Moisture Loss and Drying Shrinkage of Shotcrete at Early Age. ACI Materials Journal, 117(4). doi:10.14359/51724624.
[57] ILO. (2016). Workplace Stress: A collective challenge. International Labour Organization, Geneva, Switzerland. Available online: https://www.ilo.org/wcmsp5/groups/public/---ed_protect/---protrav/---safework/documents/publication/wcms_466547.pdf (accessed on August 2023).
[58] BLS. (2021). Census of fatal occupational injuries in 2021. U.S. Bureau of Labor Statistics, Washington, United States. Available online: https://www.bls.gov/news.release/pdf/cfoi.pdf (accessed on August 2023).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.