The behavior of Shear Connectors in Steel-Normal Concrete Composite Structure under Repeated Loads
Downloads
Doi: 10.28991/CEJ-2024-010-01-013
Full Text: PDF
Downloads
[2] Jayas, B. S., & Hosain, M. U. (1988). Behaviour of Headed Studs in Composite Beams: Push-Out Tests. Canadian Journal of Civil Engineering, 15(2), 240–253. doi:10.1139/l88-032.
[3] Ellobody, E., & Young, B. (2006). Performance of shear connection in composite beams with profiled steel sheeting. Journal of Constructional Steel Research, 62(7), 682–694. doi:10.1016/j.jcsr.2005.11.004.
[4] Bonilla Rocha, J. D., Arrizabalaga, E. M., Quevedo, R. L., & Recarey Morfa, C. A. (2012). Behavior and strength of welded stud shear connectors in composite beam. Revista Facultad de Ingeniería Universidad de Antioquia, 63, 93–104. doi:10.17533/udea.redin.12489.
[5] Hicks, S. J., & Smith, A. L. (2014). Stud Shear Connectors in Composite Beams that Support Slabs with Profiled Steel Sheeting. Structural Engineering International, 24(2), 246–253. doi:10.2749/101686614x13830790993122.
[6] Albarram, A. (2019). Behaviour of Headed Stud Connectors in Composite Beams with Very Deep Profiled Sheeting. Ph.D. Thesis, University of East London, London, United Kingdom.
[7] Shim, H. B., Chung, K. S., Jang, S. H., Park, S. J., & Lee, J. H. (2010). Push-out tests on shear studs in high strength concrete. 7th international conference on fracture mechanics of concrete and concrete structures (FraMCoS-7), 23-28 May, 2010, Jeju, Korea.
[8] Bouchair, A., Bujnak, J., Duratna, P., & Lachal, A. (2012). Modeling of the steel-concrete push-out test. Procedia Engineering, 40, 102–107. doi:10.1016/j.proeng.2012.07.063.
[9] Qureshi, J., Lam, D., & Ye, J. (2011). Effect of shear connector spacing and layout on the shear connector capacity in composite beams. Journal of Constructional Steel Research, 67(4), 706–719. doi:10.1016/j.jcsr.2010.11.009.
[10] Jayanthi, V., & Umarani, C. (2018). Performance evaluation of different types of shear connectors in steel-concrete composite construction. Archives of Civil Engineering 64(2), 97–110. doi:10.2478/ace-2018-0019.
[11] Choi, I. R., & Kim, C. S. (2021). Push-out tests on various steel anchors with partial-length welding in steel–concrete composite members. Applied Sciences (Switzerland), 11(1), 1–15. doi:10.3390/app11010105.
[12] Arévalo, D., Hernández, L., Gómez, C., Velasteguí, G., Guaminga, E., Baquero, R., & Dibujés, R. (2021). Structural performance of steel angle shear connectors with different orientation. Case Studies in Construction Materials, 14, e00523. doi:10.1016/j.cscm.2021.e00523.
[13] Saleh, S. M., & Majeed, F. H. (2022). Shear Strength of Headed Stud Connectors in Self-Compacting Concrete with Recycled Coarse Aggregate. Buildings, 12(5). doi:10.3390/buildings12050505.
[14] Ibrahim, T. H., & Allawi, A. A. (2023). The Response of Reinforced Concrete Composite Beams Reinforced with Pultruded GFRP to Repeated Loads. Journal of Engineering, 29(1), 158–174. doi:10.31026/j.eng.2023.01.10.
[15] Zhao, G. Y., Liu, W., Su, R., & Zhao, J. C. (2023). A Beam Finite Element Model Considering the Slip, Shear Lag, and Time-Dependent Effects of Steel–Concrete Composite Box Beams. Buildings, 13(1), 215. doi:10.3390/buildings13010215.
[16] Zhao, G. Y., Zhu, L., Liu, W., Zhao, J. C., & Huo, J. X. (2023). Numerical Study on the Effect of Interface Dynamic Damage of Steel–Concrete Composite Beam Bridge Caused by High–Frequency Impact Load. Buildings, 13(2), 545. doi:10.3390/buildings13020545.
[17] Bro, M., & Westberg, M. (2004). Influence of fatigue on headed stud connectors in composite bridges. Master Thesis, Lulea University of Technology, Luleå, Sweden.
[18] Lee, P. G., Shim, C. S., & Chang, S. P. (2005). Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges. Journal of Constructional Steel Research, 61(9), 1270–1285. doi:10.1016/j.jcsr.2005.01.007.
[19] Hanswille, G., Porsch, M., & Ustundag, C. (2007). Resistance of headed studs subjected to fatigue loading: Part I: Experimental study. Journal of Constructional Steel Research, 63(4), 475-484. doi:10.1016/j.jcsr.2006.06.035.
[20] Hanswille, G., Porsch, M., & Ustundag, C. (2007). Resistance of headed studs subjected to fatigue loading Part II: Analytical study. Journal of Constructional Steel Research, 63(4), 485–493. doi:10.1016/j.jcsr.2006.06.036.
[21] Azad, A. R. G., Mafipour, M. S., & Tatlari, S. (2018). Fatigue Behavior of Shear Connectors in Steel-Concrete Beams with Partial Interaction. 3rd International Conference on Steel & Structure, 11-12 December, 2018, Tehran, Iran.
[22] Liang, X., Yi, X., Wang, B., & Liu, X. (2022). Slip behavior of stud connectors of steel-concrete composite beams in the whole process of fatigue loading. Structures, 44, 1607–1616. doi:10.1016/j.istruc.2022.08.104.
[23] EN 1994-2. (2005). Design of composite steel and concrete structures – Part 2: General rules and rules for bridges. European Comittee for Standardization, Brussels, Belgium.
[24] ASTM C150/C150M. (2015). Standard Speciï¬cation for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-12.
[25] ASTM C33/C33M-11a. (2013). Standard Speciï¬cation for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-11A.
[26] ASTM C873/C873M. (2010). Standard Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds. ASTM International, Pennsylvania, United States. doi:10.1520/C0873_C0873M-10.
[27] ASTM C469/C469M-14. (2014). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. ASTM International, Pennsylvania, United States. doi:10.1520/C0469_C0469M-14.
[28] ASTM C496/C496M. (2011). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.