Application of the Arrhenius Equation in Predicting the Temperature Susceptibility of Unmodified and Modified Bituminous Binder

Tangudu Srikanth, Ajithkumar Padmarekha

Abstract


Bitumen is a temperature-susceptible material. The performance of the bitumen largely depends on the sensitivity of its characteristic properties to the variation in temperature. This paper uses the Arrhenius equation to predict the temperature-sensitive properties of various bitumens. Three modified and unmodified binders of various grades were tested under study shear, frequency mode (oscillatory shearing), and time mode (multiple stress creep and recovery) at different temperatures from 10 to 70ºC. This paper focuses on the activation energy to understand the temperature-susceptible behavior of the bitumen and the influence of aging on the bitumen. To analyze the temperature susceptibility of the bitumen, Steady shear, MSCR, and LAOS tests were performed. From these tests, parameters such as viscosity, dynamic modulus, energy dissipation, and creep compliance at different temperatures were observed to follow the Arrhenius equation. The activation energy constant of the Arrhenius equation is found to vary with the characteristic function used. It is also statistically proven that the activation energy depends on the shear rate or shear stress, indicating that the temperature-susceptible properties of the bitumen are shear rate-dependent. Also, as the bitumen ages, its temperature-susceptible properties improve.

 

Doi: 10.28991/CEJ-2024-010-03-015

Full Text: PDF


Keywords


Activation Energy; Aging of Bitumen; Arrhenius Equation; Creep Compliance; Energy Dissipation; F Test; Temperature Susceptibility.

References


Nivitha, M. R., & Krishnan, J. M. (2014). Development of Pavement Temperature Contours for India. Journal of The Institution of Engineers (India): Series A, 95(2), 83–90. doi:10.1007/s40030-014-0074-y.

Padmarekha, A., & Krishnan, J. M. (2013). Viscoelastic Transition of Unaged and Aged Asphalt. Journal of Materials in Civil Engineering, 25(12), 1852–1863. doi:10.1061/(asce)mt.1943-5533.0000734.

Nivitha, M. R., & Murali Krishnan, J. (2016). What is Transition Temperature for Bitumen and How to Measure It? Transportation in Developing Economies, 2(1), 1–8. doi:10.1007/s40890-015-0009-y.

IS73. (2013). Paving Bitumen-Specification (4th REVISION). Bureau of Indian Standards, New Delhi, India.

ASTM, D6373-21a. (2023). Standard Specification for Performance-Graded Asphalt Binder. ASTM International, Pennsylvania, United States. doi:10.1520/D6373-21A.

Heukelom, W. (1969). A bitumen test data chart for showing the effect of temperature on the mechanical behavior of asphaltic bitumens. Institute of Petroleum, 55(5460), 404-417.

Storm, D. A., Barresi, R. J., & Sheu, E. Y. (1996). Development of solid properties and thermochemistry of asphalt binders in the 25-65°C temperature range. Energy & Fuels, 10(3), 855–864. doi:10.1021/ef9502564.

Nivitha, M. R., Prasad, E., & Krishnan, J. M. (2019). Transitions in unmodified and modified bitumen using FTIR spectroscopy. Materials and Structures/Materiaux et Constructions, 52(1), 1–11. doi:10.1617/s11527-018-1308-7.

Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of the American Chemical Society, 77(14), 3701–3707. doi:10.1021/ja01619a008.

Ferry, J. D. (1980). Viscoelastic properties of polymers. John Wiley & Sons, Hoboken, United States.

Rajan, S., Sutton, M. A., Oseli, A., Emri, I., & Matta, F. (2017). Linear viscoelastic creep compliance and retardation spectra of bitumen impregnated fiberglass mat and polymer modified bitumen. Construction and Building Materials, 155, 664–679. doi:10.1016/j.conbuildmat.2017.08.030.

Zoorob, S. E., Mturi, G. A., Sangiorgi, C., Dinis-Almeida, M., & Habib, N. Z. (2018). Fluxing as a new tool for bitumen rheological characterization and the use of time-concentration shift factor (AC). Construction and Building Materials, 158, 691–699. doi:10.1016/j.conbuildmat.2017.10.020.

Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1–2), 42–82. doi:10.1016/j.cis.2008.08.011.

Cheung, C. Y., &Cebon, D. (1997). Experimental study of pure bitumens in tension, compression, and shear. Journal of Rheology, 41(1), 45–74. doi:10.1122/1.550858.

Atul Narayan, S. P., Murali Krishnan, J., Little, D. N., & Rajagopal, K. R. (2016). Mechanical behaviour of asphalt binders at high temperatures and specification for rutting. International Journal of Pavement Engineering, 18(10), 916–927. doi:10.1080/10298436.2015.1126272.

Maze, M. (1996). Viscosity of EVA Polymer-Modified Bitumens: Modelling. No. 5170 Section 5. Euraspahlt&Eurobitume Congress, 7-10 May, 1996, Strasbourg, France.

Salomon, D., & Zhai, H. (2002). Ranking asphalt binders by activation energy for flow. Journal of Applied Asphalt Binder Technology, 2(2), 52-60.

Dongre, R., Myers, L., D'Angelo, J., Paugh, C., & Gudimettla, J. (2005). Field evaluation of Witczak and Hirsch models for predicting dynamic modulus of hot-mix asphalt (with discussion). Journal of the Association of Asphalt Paving Technologists, 74.

Salomon, D., & Zhai, H. (2004). Asphalt binder flow activation energy and its significance for compaction effort. Proceedings of 3rdEuroasphalt&Eurobitume congress, 12-14 May 2004, Vienna, Austria.

Saboo, N., Singh, B., & Kumar, P. (2019). Development of High-Temperature Ranking Parameter for Asphalt Binders Using Arrhenius Model. Journal of Materials in Civil Engineering, 31(12), 4019297. doi:10.1061/(asce)mt.1943-5533.0002965.

Garća-Morales, M., Partal, P., Navarro, F. J., Mart́nez-Boza, F., Gallegos, C., González, N., González, O., & Muñoz, M. E. (2004). Viscous properties and microstructure of recycled EVA modified bitumen. Fuel, 83(1), 31–38. doi:10.1016/S0016-2361(03)00217-5.

Ait-Kadi, A., Brahimi, B., &Bousmina, M. (1996). Polymer blends for enhanced asphalt binders. Polymer Engineering & Science, 36(12), 1724–1733. doi:10.1002/pen.10568.

Wang, H., Liu, X., Apostolidis, P., & Scarpas, T. (2018). Rheological behavior and its chemical interpretation of crumb rubber modified asphalt containing warm-mix additives. Transportation Research Record, 2672(28), 337–348. doi:10.1177/0361198118781376.

Jamshidi, A., Hamzah, M. O., Shahadan, Z., & Yahaya, A. S. (2015). Evaluation of the Rheological Properties and Activation Energy of Virgin and Recovered Asphalt Binder Blends. Journal of Materials in Civil Engineering, 27(3), 4014135. doi:10.1061/(asce)mt.1943-5533.0001024.

Luo, X., Gu, F., & Lytton, R. L. (2019). Kinetics-based aging prediction of asphalt mixtures using field deflection data. International Journal of Pavement Engineering, 20(3), 287–297. doi:10.1080/10298436.2017.1293262.

Luo, X., Gu, F., & Lytton, R. L. (2015). Prediction of field aging gradient in asphalt pavements. Transportation Research Record, 2507(1), 19–28. doi:10.3141/2507-03.

Haider, S. W., Mirza, M. W., Thottempudi, A. K., Bari, J., &Baladi, G. Y. (2011). Characterizing Temperature Susceptibility of Asphalt Binders Using Activation Energy for Flow. Transportation and Development Institute Congress 2011. doi:10.1061/41167(398)48.

Notani, M. A., Arabzadeh, A., Satvati, S., TarighatiTabesh, M., GhafariHashjin, N., Estakhri, S., & Alizadeh, M. (2020). Investigating the high-temperature performance and activation energy of carbon black-modified asphalt binder. SN Applied Sciences, 2(2), 1–12. doi:10.1007/s42452-020-2102-z.

Raouf, M. A., & Williams, R. C. (2010). Temperature and shear susceptibility of a nonpetroleum binder as a pavement material. Transportation Research Record, 2180(2180), 9–18. doi:10.3141/2180-02.

Ingram, L., Mohan, D., Bricka, M., Steele, P., Strobel, D., Crocker, D., Mitchell, B., Mohammad, J., Cantrell, K., & Pittman, C. U. (2008). Pyrolysis of wood and bark in an auger reactor: Physical properties and chemical analysis of the produced bio-oils. Energy and Fuels, 22(1), 614–625. doi:10.1021/ef700335k.

ASTM D2872-22. (2022). Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test). ASTM International, Pennsylvania, United States. doi:10.1520/D2872-22.

ASTM D6521-22. (2022). Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV). ASTM International, Pennsylvania, United States. doi:10.1520/D6521-22.

Kalelkar, C., Lele, A., & Kamble, S. (2010). Strain-rate frequency superposition in large-amplitude oscillatory shear. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 81(3), 31401. doi:10.1103/PhysRevE.81.031401.

ASTM D7405. (2015). Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM International, Pennsylvania, United States.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-03-015

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Srikanth Tangudu, PADMAREKHA AJITHKUMAR

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message