Comparative Study of Machine Learning Algorithms in Classifying HRV for the Driver’s Physiological Condition

Siti Fatimah Abdul Razak, S. N. M. Sayed Ismail, Sumendra Yogarayan, Mohd Fikri Azli Abdullah, Noor Hisham Kamis, Azlan Abdul Aziz

Abstract


Heart Rate Variability (HRV) may be used as a psychological marker to assess drivers’ states from physiological signals such as an electrocardiogram (ECG), electroencephalogram (EEG), and photoplethysmography (PPG). This paper reviews HRV acquisition methods from drivers and machine learning approaches for driver cardiac health based on HRV classification. The study examines four publicly available ECG datasets and analyzes their HRV features, including time domain, frequency domain, short-term measures, and a combination of time and frequency domains. Eight machine learning classifiers, namely K-Nearest Neighbor, Decision Tree, Naive Bayes, Linear Discriminant Analysis, Support Vector Machine, Random Forest, Gradient Boost, and Adaboost, were used to determine whether the driver's state is normal or abnormal. The results show that K-Nearest Neighbor and Decision Tree classifiers had the highest accuracy at 92.86%. The study concludes by assessing the performance of machine learning algorithms in classifying HRV for the driver's physiological condition using the Man-Whitney U test in terms of accuracy and F1 score. We have statistical evidence to support that the prediction quality is different when HRV analysis applies these three sets: (i) time domain measures or frequency domain measures; (ii) frequency domain measures or short-term measures; and (iii) combining time and frequency domains or only frequency domains.

 

Doi: 10.28991/CEJ-2023-09-09-013

Full Text: PDF


Keywords


Driver Monitoring System; ADAS; Machine Learning; Vehicle Safety.

References


Aimie-Salleh, N., Aliaa Abdul Ghani, N., Hasanudin, N., & Nur Shakiroh Shafie, S. (2020). Heart Rate Variability Recording System Using Photoplethysmography Sensor. Autonomic Nervous System Monitoring - Heart Rate Variability, IntechOpen, London, United Kingdom. doi:10.5772/intechopen.89901.

Arakawa, T. (2021). A review of heartbeat detection systems for automotive applications. Sensors, 21(18), 6112. doi:10.3390/s21186112.

Bhardwaj, R., & Balasubramanian, V. (2019). Viability of Cardiac Parameters Measured Unobtrusively Using Capacitive Coupled Electrocardiography (cECG) to Estimate Driver Performance. IEEE Sensors Journal, 19(11), 4321–4330. doi:10.1109/JSEN.2019.2898450.

Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381. doi:10.1093/oxfordjournals.eurheartj.a014868.

Castaldo, R., Montesinos, L., Melillo, P., James, C., & Pecchia, L. (2019). Ultra-short term HRV features as surrogates of short term HRV: A case study on mental stress detection in real life. BMC Medical Informatics and Decision Making, 19(1), 1-13. doi:10.1186/s12911-019-0742-y.

de Oliveira Júnior, F. A., Pereira, R. A., Silva, A. S., de Brito Alves, J. L., Costa-Silva, J. H., Braga, V. A., & Balarini, C. M. (2022). Different acquisition systems for heart rate variability analysis may lead to diverse outcomes. Brazilian Journal of Medical and Biological Research, 55. doi:10.1590/1414-431X2021e11720.

Geronikolou, S. A., Chrousos, G. P., & Cokkinos, D. V. (2021). Heart Rate Variability Components in Electromagnetic Hypersensitive Persons. In Handbook of Computational Neurodegeneration, 1–10. Springer International Publishing. doi:10.1007/978-3-319-75479-6_54-1.

Aswathi, C. D., Mathew, N. A., Riyas, K. S., & Jose, R. (2021). Comparison of Machine Learning Algorithms for Heart Rate Variability Based Driver Drowsiness Detection. 2021 2nd Global Conference for Advancement in Technology (GCAT). doi:10.1109/gcat52182.2021.9587733.

Benchekroun, M., Chevallier, B., Istrate, D., Zalc, V., & Lenne, D. (2022). Preprocessing Methods for Ambulatory HRV Analysis Based on HRV Distribution, Variability and Characteristics (DVC). Sensors, 22(5), 1984. doi:10.3390/s22051984.

Bhor, P., Sodhi, G. S., & Sing, D. (2019). Classification of Heart Rate Variability through Machine Learning. International Journal of Electronic Engineering, 11(2), 73–80.

Bousseljot, R.-D. (1995). Use of the PTB’s CARDIODAT ECG signal database via the Internet [in German]. Biomedical Engineering, 40. doi:10.13026/C28C71.

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), 215– 220. doi:10.1161/01.cir.101.23.e215.

Hantono, B. S., Nugroho, L. E., & Santosa, P. I. (2020). Mental stress detection via heart rate variability using machine learning. International Journal on Electrical Engineering and Informatics, 12(3), 431–444. doi:10.15676/ijeei.2020.12.3.3.

Hasan, M. M., Watling, C. N., & Larue, G. S. (2022). Physiological signal-based drowsiness detection using machine learning: Singular and hybrid signal approaches. Journal of Safety Research, 80, 215–225. doi:10.1016/j.jsr.2021.12.001.

Healey, J. A., & Picard, R. W. (2005). Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems, 6(2), 156–166. doi:10.1109/TITS.2005.848368.

Hejjel, L. (2004). Suppression of power-line interference by analog notch filtering in the ECG signal for heart rate variability analysis: to do or not to do?. Medical Science Monitor, 10(1), MT6-MT13.

Huang, J., Liu, Y., & Peng, X. (2022). Recognition of driver’s mental workload based on physiological signals, a comparative study. Biomedical Signal Processing and Control, 71. doi:10.1016/j.bspc.2021.103094.

Persson, A., Jonasson, H., Fredriksson, I., Wiklund, U., & Ahlstrom, C. (2021). Heart Rate Variability for Classification of Alert versus Sleep Deprived Drivers in Real Road Driving Conditions. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3316–3325. doi:10.1109/TITS.2020.2981941.

Ishaque, S., Khan, N., & Krishnan, S. (2021). Trends in Heart-Rate Variability Signal Analysis. Frontiers in Digital Health, 3. doi:10.3389/fdgth.2021.639444.

Iwamoto, H., Hori, K., Fujiwara, K., & Kano, M. (2021). Real-driving-implementable drowsy driving detection method using heart rate variability based on long short-term memory and autoencoder. IFAC-PapersOnLine, 54(15), 526–531. doi:10.1016/j.ifacol.2021.10.310.

Kakaria, S., Bigné, E., Catrambone, V., & Valenza, G. (2022). Heart rate variability in marketing research: A systematic review and methodological perspectives. Psychology & Marketing, 40(1), 190–208. doi:10.1002/mar.21734.

Iqbal, T., Elahi, A., Wijns, W., & Shahzad, A. (2022). Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection. Frontiers in Medical Technology, 4. doi:10.3389/fmedt.2022.782756.

Koay, H. V., Chuah, J. H., Chow, C. O., & Chang, Y. L. (2022). Detecting and recognizing driver distraction through various data modality using machine learning: A review, recent advances, simplified framework and open challenges (2014–2021). Engineering Applications of Artificial Intelligence, 115, 105309. doi:10.1016/j.engappai.2022.105309.

Liu, S., Koch, K., Zhou, Z., Maritsch, M., He, X., Fleisch, E., & Wortmann, F. (2022). Toward Nonintrusive Camera-Based Heart Rate Variability Estimation in the Car under Naturalistic Condition. IEEE Internet of Things Journal, 9(14), 11699–11711. doi:10.1109/JIOT.2021.3131742.

Lopez-Martinez, D., El-Haouij, N., & Picard, R. (2019). Detection of Real-World Driving-Induced Affective State Using Physiological Signals and Multi-View Multi-Task Machine Learning. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). doi:10.1109/aciiw.2019.8925190.

Manstetten, D., Beruscha, F., Bieg, H. J., Kobiela, F., Korthauer, A., Krautter, W., & Marberger, C. (2020, October). The Evolution of Driver Monitoring Systems: A Shortened Story on Past, Current and Future Approaches How Cars Acquire Knowledge About the Driver's State. 22nd International Conference on Human-Computer Interaction with Mobile Devices and Services . doi:10.1145/3406324.3425896.

Massoz, Q., Langohr, T., Francois, C., & Verly, J. G. (2016). The ULG multimodality drowsiness database (called DROZY) and examples of use. 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). doi:10.1109/wacv.2016.7477715.

Munla, N., Khalil, M., Shahin, A., & Mourad, A. (2015). Driver stress level detection using HRV analysis. 2015 International Conference on Advances in Biomedical Engineering, ICABME 2015, 61–64. doi:10.1109/ICABME.2015.7323251.

Murugan, S., Selvaraj, J., & Sahayadhas, A. (2020). Detection and analysis: driver state with electrocardiogram (ECG). Physical and Engineering Sciences in Medicine, 43(2), 525–537. doi:10.1007/s13246-020-00853-8.

Nguyen, T. T., Aoki, H., Le, A. S., Akio, H., Aoki, K., Inagami, M., & Suzuki, T. (2021). Driver State Detection Based on Cardiovascular System and Driver Reaction Information Using a Graphical Model. Journal of Transportation Technologies, 11(02), 139–156. doi:10.4236/jtts.2021.112009.

Nunan, D., Sandercock, G. R. H., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. PACE - Pacing and Clinical Electrophysiology, 33(11), 1407–1417. doi:10.1111/j.1540-8159.2010.02841.x.

Oskooei, A., Chau, S. M., Weiss, J., Sridhar, A., Martínez, M. R., & Michel, B. (2020). DeStress: Deep Learning for Unsupervised Identification of Mental Stress in Firefighters from Heart-Rate Variability (HRV) Data. Studies in Computational Intelligence, 93–105, Springer, Cham, Switzerland. doi:10.1007/978-3-030-53352-6_9.

Kim, J. K., & Ahn, J. M. (2019). Digital IIR filters for heart rate variability; a comparison between Butterworth and elliptic filters. International Journal of Scientific and Technology Research, 8(12), 3509–3513.

Rastgoo, M. N., Nakisa, B., Maire, F., Rakotonirainy, A., & Chandran, V. (2019). Automatic driver stress level classification using multimodal deep learning. Expert Systems with Applications, 138. doi:10.1016/j.eswa.2019.07.010.

Riganello, F., Larroque, S. K., Bahri, M. A., Heine, L., Martial, C., Carrière, M., Charland-Verville, V., Aubinet, C., Vanhaudenhuyse, A., Chatelle, C., Laureys, S., & Di Perri, C. (2018). A Heartbeat Away From Consciousness: Heart Rate Variability Entropy Can Discriminate Disorders of Consciousness and Is Correlated with Resting-State fMRI Brain Connectivity of the Central Autonomic Network. Frontiers in Neurology, 9. doi:10.3389/fneur.2018.00769.

Riposan-Taylor, A., & Taylor, I. J. (2018). Personal Connected Devices for Healthcare. The Internet of Things for Smart Urban Ecosystems, 333–361, Springer, Cham, Switzerland. doi:10.1007/978-3-319-96550-5_14.

Schneegass, S., Pfleging, B., Broy, N., Heinrich, F., & Schmidt, A. (2013). A data set of real world driving to assess driver workload. Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. doi:10.1145/2516540.2516561.

Nunes, C., Beatriz-Afonso, A., Cruz-Jesus, F., Oliveira, T., & Castelli, M. (2022). Mathematics and Mother Tongue Academic Achievement. Emerging Science Journal, 6(Special Issue), 137-149. doi:10.28991/ESJ-2022-SIED-010.

Taylor, P., Griffiths, N., Bhalerao, A., Xu, Z., Gelencser, A., & Popham, T. (2017). Investigating the feasibility of vehicle telemetry data as a means of predicting driver workload. International Journal of Mobile Human Computer Interaction, 9(3), 54–72. doi:10.4018/ijmhci.2017070104.

van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). HeartPy: A novel heart rate algorithm for the analysis of noisy signals. Transportation Research Part F: Traffic Psychology and Behaviour, 66, 368–378. doi:10.1016/j.trf.2019.09.015.

Vicente, J., Laguna, P., Bartra, A., & Bailón, R. (2016). Drowsiness detection using heart rate variability. Medical and Biological Engineering and Computing, 54(6), 927–937. doi:10.1007/s11517-015-1448-7.

Wagner, P., Strodthoff, N., Bousseljot, R. D., Kreiseler, D., Lunze, F. I., Samek, W., & Schaeffter, T. (2020). PTB-XL, a large publicly available electrocardiography dataset. Scientific Data, 7(1), 154. doi:10.1038/s41597-020-0495-6.

Wang, K., & Guo, P. (2021). An Ensemble Classification Model with Unsupervised Representation Learning for Driving Stress Recognition Using Physiological Signals. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3303–3315. doi:10.1109/TITS.2020.2980555.

Zontone, P., Affanni, A., Bernardini, R., Brisinda, D., Del Linz, L., Formaggia, F., Minen, D., Minen, M., Savorgnan, C., Piras, A., Rinaldo, R., & Fenici, R. (2020). Comparative assessment of drivers’ stress induced by autonomous and manual driving with heart rate variability parameters and machine learning analysis of electrodermal activity. European Heart Journal, 41. doi:10.1093/ehjci/ehaa946.3515.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-09-013

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Siti Fatimah Abdul Razak, S. N. M. Sayed Ismail, Sumendra Yogarayan, Mohd Fikri Azli Abdullah, Noor Hisham Kamis, Azlan Abdul Aziz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message