Strength Assessment of Stiffened-Panel Structures against Buckling Loads: FE Benchmarking and Analysis

M. Sholikhah, R. Ridwan, A. R. Prabowo, T. Ghanbari-Ghazijahani, I. Yaningsih, N. Muhayat, D. D. D. P. Tjahjana, R. Adiputra, J. M. Sohn


This research endeavors to examine the effect of stiffener shapes on the structural capacity of stiffened-plate structures, specifically focusing on Tee (T), Angle (L), and Flat (I) stiffened plates. The primary objectives are threefold: firstly, to quantify the critical load values during the buckling phenomenon for T, L, and I stiffened plates; secondly, to assess model deformation upon failure; and thirdly, to investigate whether the buckling behavior of T, L, and I stiffened plates correlates with distinct failure patterns. Employing numerical simulation through the finite element method, this study sheds light on previously unexplored aspects of structural behavior. The findings indicate that angle stiffeners exhibit superior load-bearing performance compared to flat bars. Notably, the research reveals a substantial increase in maximum compressive load by at least 15.90% with Tee bar and 8.25% with angle bar stiffeners when the stiffened panels undergo a 5 mm displacement, presenting a potential avenue for structural enhancement. Additionally, the study demonstrates that T bars outperform in terms of resisting buckling. Noteworthy is the novel approach of examining the combined effect of transverse frame, longitudinal frame, and hull girder under buckling scenarios, a facet not explored in previous research. Furthermore, the utilization of steel S355JR-EN10210 as a material introduces a unique dimension not previously considered in these scenarios.


Doi: 10.28991/CEJ-2024-010-04-03

Full Text: PDF


Ultimate Strength; Stiffened Panel; Buckling Load; Ship Structure; Nonlinear Finite Element Method (NLFEM).


UNCTAD. (2021). Review of Maritime Transport 2021. United Nations Conference on Trade and Development, United Nations Publication, Geneva, Switzerland.

Allianz. (2021). Safety and shipping review 2021. Allianz Global Corporate & Specialty, Munich, Germany.

Paik, J. K., & Seo, J. K. (2009). Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-Part II: Stiffened panels. Thin-Walled Structures, 47(8–9), 998–1007. doi:10.1016/j.tws.2008.08.006.

Omidali, M., & Khedmati, M. R. (2018). Reliability-based design of stiffened plates in ship structures subject to wheel patch loading. Thin-Walled Structures, 127, 416–424. doi:10.1016/j.tws.2018.02.022.

Doan, V. T., Liu, B., Garbatov, Y., Wu, W., & Guedes Soares, C. (2020). Strength assessment of aluminium and steel stiffened panels with openings on longitudinal girders. Ocean Engineering, 200(107047). doi:10.1016/j.oceaneng.2020.107047.

Pedram, M., & Khedmati, M. R. (2014). The effect of welding on the strength of aluminium stiffened plates subject to combined uniaxial compression and lateral pressure. International Journal of Naval Architecture and Ocean Engineering, 6(1), 39–59. doi:10.2478/IJNAOE-2013-0162.

Guedes Soares, C., & Gordo, J. M. (1997). Design Methods for Stiffened Plates under Predominantly Uniaxial Compression. Marine Structures, 10(6), 465–497. doi:10.1016/s0951-8339(97)00002-6.

Feng, L., Yu, J., Zheng, J., He, W., & Liu, C. (2024). Experimental and numerical study of residual ultimate strength of hull plate subjected to coupled damage of pitting corrosion and crack. Ocean Engineering, 294. doi:10.1016/j.oceaneng.2024.116710.

Cui, J., & Wang, D. (2020). An experimental and numerical investigation on ultimate strength of stiffened plates with opening and perforation corrosion. Ocean Engineering, 205. doi:10.1016/j.oceaneng.2020.107282.

Lee, J., & Kang, Y. J. (2024). Elastic local buckling coefficients of I-shaped beams considering flange–web interaction. Thin-Walled Structures, 195. doi:10.1016/j.tws.2023.111325.

Boissonnade, N., Nseir, J., & Somja, H. (2024). Experimental and numerical investigations towards the lateral torsional buckling of cellular steel beams. Thin-Walled Structures, 195. doi:10.1016/j.tws.2023.111388.

Ghadami, A., Jawdhari, A., & PourMoosavi, G. (2024). Buckling and post-buckling behavior of top flange coped I-beams with slender web panels. Thin-Walled Structures, 198(111640). doi:10.1016/j.tws.2024.111640.

Quinn, D., Murphy, A., McEwan, W., & Lemaitre, F. (2009). Stiffened panel stability behaviour and performance gains with plate prismatic sub-stiffening. Thin-Walled Structures, 47(12), 1457–1468. doi:10.1016/j.tws.2009.07.004.

Esmaeili-Goldarag, F., Babaei, A., & Jafarzadeh, H. (2018). An experimental and numerical investigation of clamping force variation in simple bolted and hybrid (bolted-bonded) double lap joints due to applied longitudinal loads. Engineering Failure Analysis, 91, 327–340. doi:10.1016/j.engfailanal.2018.04.047.

Goldarag, F. E., Barzegar, S., & Babaei, A. (2015). An experimental method for measuring the clamping force in double lap simple bolted and hybrid (bolted-bonded) joints. Transactions of Famena, 39(3), 87–94.

ANSYS. (2020). ANSYS LS-DYNA User’s Guide. ANSYS Inc., Pennsylvania, United States.

Ridwan, Putranto, T., Laksono, F. B., & Prabowo, A. R. (2020). Fracture and damage to the material accounting for transportation crash and accident. Procedia Structural Integrity, 27, 38–45. doi:10.1016/j.prostr.2020.07.006.

Prabowo, A. R., Tuswan, T., Prabowoputra, D. M., & Ridwan, R. (2021). Deformation of designed steel plates: An optimisation of the side hull structure using the finite element approach. Open Engineering, 11(1), 1034–1047. doi:10.1515/eng-2021-0104.

Dzulfiqar, M. F., Prabowo, A. R., Ridwan, R., & Nubli, H. (2021). Assessment on the designed structural frame of the automatic thickness checking machine - Numerical validation in FE method. Procedia Structural Integrity, 33, 59–66. doi:10.1016/j.prostr.2021.10.009.

Prabowo, A. R., Ridwan, R., Tuswan, T., Sohn, J. M., Surojo, E., & Imaduddin, F. (2022). Effect of the selected parameters in idealizing material failures under tensile loads: Benchmarks for damage analysis on thin-walled structures. Curved and Layered Structures, 9(1), 258–285. doi:10.1515/cls-2022-0021.

Ridwan, R., Nuriana, W., & Prabowo, A. R. (2022). Energy absorption behaviors of designed metallic square tubes under axial loading: Experiment-based benchmarking and finite element calculation. Journal of the Mechanical Behavior of Materials, 31(1), 443–461. doi:10.1515/jmbm-2022-0052.

Alwan, F. H. A., Prabowo, A. R., Muttaqie, T., Muhayat, N., Ridwan, R., & Laksono, F. B. (2022). Assessment of ballistic impact damage on aluminum and magnesium alloys against high velocity bullets by dynamic FE simulations. Journal of the Mechanical Behavior of Materials, 31(1), 595–616. doi:10.1515/jmbm-2022-0064.

Prabowo, A. R., Ridwan, R., & Muttaqie, T. (2022). On The Resistance to Buckling Loads of Idealized Hull Structures: FE Analysis on Designed-Stiffened Plates. Designs, 6(3), 46. doi:10.3390/designs6030046.

Saleh, S. M., Majeed, F. H., Al-Salih, O., & Hussain, H. K. (2023). Torsional Behavior of Steel-Concrete-Steel Sandwich Beams with Welded Stirrups as Shear Connectors. Civil Engineering Journal, 9(1), 208-219. doi:10.28991/CEJ-2023-09-01-016.

Prabowo, A. R., Do, Q. T., Cao, B., & Bae, D. M. (2020). Land and marine-based structures subjected to explosion loading: A review on critical transportation and infrastructure. Procedia Structural Integrity, 27, 77–84. doi:10.1016/j.prostr.2020.07.011.

Ridwan, R., Prabowo, A. R., Muhayat, N., Putranto, T., & Sohn, J. M. (2020). Tensile analysis and assessment of carbon and alloy steels using Fe approach as an idealization of material fractures under collision and grounding. Curved and Layered Structures, 7(1), 188-198. doi:10.1515/cls-2020-0016.

Prabowo, A. R., & Bae, D. M. (2019). Environmental risk of maritime territory subjected to accidental phenomena: Correlation of oil spill and ship grounding in the Exxon Valdez’s case. Results in Engineering, 4(100035). doi:10.1016/j.rineng.2019.100035.

Pratama, A. A., Prabowo, A. R., Muttaqie, T., Muhayat, N., Ridwan, R., Cao, B., & Laksono, F. B. (2023). Hollow tube structures subjected to compressive loading: implementation of the pitting corrosion effect in nonlinear FE analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45, 143. doi:10.1007/s40430-023-04067-3.

Branquinho, M. Á., & Malite, M. (2021). Effective slenderness ratio approach for thin-walled angle columns connected by the leg. Journal of Constructional Steel Research, 176, 106434. doi:10.1016/j.jcsr.2020.106434.

Demirci, S. M. E., & Elçiçek, H. (2023). Scientific awareness of marine accidents in Europe: A bibliometric and correspondence analysis. Accident Analysis and Prevention, 190, 107166. doi:10.1016/j.aap.2023.107166.

Chen, J., Di, Z., Shi, J., Shu, Y., Wan, Z., Song, L., & Zhang, W. (2020). Marine oil spill pollution causes and governance: A case study of Sanchi tanker collision and explosion. Journal of Cleaner Production, 273, 122978. doi:10.1016/j.jclepro.2020.122978.

Guimarães, L. S. F., de Carvalho-Junior, L., Façanha, G. L., Resende, N. da S., Neves, L. M., & Cardoso, S. J. (2023). Meta-analysis of the thermal pollution caused by coastal nuclear power plants and its effects on marine biodiversity. Marine Pollution Bulletin, 195, 115452. doi:10.1016/j.marpolbul.2023.115452.

Prabowo, A. R., Cahyono, S. I., & Sohn, J. M. (2019). Crashworthiness assessment of thin-walled double bottom tanker: A variety of ship grounding incidents. Theoretical and Applied Mechanics Letters, 9(5), 320–327. doi:10.1016/j.taml.2019.05.002.

Yildiz, S., Uğurlu, Ö., Wang, J., & Loughney, S. (2021). Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents. Reliability Engineering and System Safety, 208, 107395. doi:10.1016/j.ress.2020.107395.

Bolat, P., & Yongxing, J. (2013). Risk assessment of potential catastrophic accidents for transportation of special nuclear materials through Turkish Straits. Energy Policy, 56, 126–135. doi:10.1016/j.enpol.2012.12.010.

Cao, B., Bae, D.-M., Sohn, J.-M., Prabowo, A. R., Chen, T. H., & Li, H. (2016). Numerical Analysis for Damage Characteristics Caused by Ice Collision on Side Structure. Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology, OMAE2016-54727, 1-7. doi:10.1115/omae2016-54727.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-03


  • There are currently no refbacks.

Copyright (c) 2024 Mar`Atu Sholikhah, Ridwan Ridwan, Aditya Rio Prabowo, Nurul Muhayat, Ristiyanto Adiputra, Dharu Feby Smaradhana, Seung Jun Baek, Bo Cao

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.