Bond Strength of Rectangular CFSST Columns after Exposed to Elevated Temperature

Anandapadmanaban K., A. S. Santhi

Abstract


This article investigates the bond- behavior of Rectangular Concrete-filled stainless-steel tubular (RCFSST) columns under post-fire conditions. The main objective of this research was to obtain τ-s relationship of RCFSST columns under the combined effects of high temperature and concrete age. A total of sixteen specimens, including four reference specimens, were tested with different parameters, namely: i) temperature (600 °C, 800 °C & 1000 °C) ii) different concrete ages (30 days, 60 days, 90 days & 180 days). Analyzing the τ-s curves of the test specimens, chemical adhesion and micro-locking were the principal forces contributing to bond strength at lower concrete ages under post-fire conditions. At a higher concrete age, RCFSST specimens displayed a longer curve after the inflection point, indicating the contribution of macro-locking forces in amplifying the bond-strength. Five distinct curve types were found from the experiments. Type 1 curves with three stages, i) initial linear, ii) non-linear, and ii) final linear stage, had a higher frequency among the other types. For 90-day cured specimens, a decline in bond strength was observed at higher temperatures, but for 180 days cured specimens, a significant rise was seen under post-fire conditions. A new set of τ-s relations for RCFSST columns with different concrete ages under post-fire was established.

 

Doi: 10.28991/CEJ-2024-010-03-019

Full Text: PDF


Keywords


Bond-Behaviour; Rectangle Stainless-Steel; Concrete Age; Concrete-Filled Stainless-Steel Tubular Columns; Push-Out Test.

References


Liao, F.-Y., Han, L.-H., Tao, Z., & Rasmussen, K. J. R. (2017). Experimental Behavior of Concrete-Filled Stainless Steel Tubular Columns under Cyclic Lateral Loading. Journal of Structural Engineering, 143(4), 1–15. doi:10.1061/(asce)st.1943-541x.0001705.

Yousuf, M., Uy, B., Tao, Z., Remennikov, A., & Liew, J. Y. R. (2013). Transverse impact resistance of hollow and concrete filled stainless steel columns. Journal of Constructional Steel Research, 82, 177–189. doi:10.1016/j.jcsr.2013.01.005.

Chen, Y., Feng, R., Shao, Y., & Zhang, X. (2017). Bond-slip behaviour of concrete-filled stainless steel circular hollow section tubes. Journal of Constructional Steel Research, 130, 248–263. doi:10.1016/j.jcsr.2016.12.012.

Qu, X., Chen, Z., Nethercot, D. A., Gardner, L., & Theofanous, M. (2015). Push-out tests and bond strength of rectangular CFST columns. Steel and Composite Structures, 19(1), 21–41. doi:10.12989/scs.2015.19.1.021.

Song, T.-Y., Tao, Z., Han, L.-H., & Uy, B. (2017). Bond Behavior of Concrete-Filled Steel Tubes at Elevated Temperatures. Journal of Structural Engineering, 143(11), 1–12. doi:10.1061/(asce)st.1943-541x.0001890.

Lakshmanan, S., & Subramanian, N. (2005). Development length of reinforcing bars - Need to revise Indian Codai Provisions. Indian Concrete Journal, 79(10), 22.

Mouli, M., & Khelafi, H. (2007). Strength of short composite rectangular hollow section columns filled with lightweight aggregate concrete. Engineering Structures, 29(8), 1791–1797. doi:10.1016/j.engstruct.2006.10.003.

Xie, K., Huang, K., Huang, L., & Zhu, T. (2023). Experimental study of bond behavior between concrete-filled steel tube and UHPC-encased. Construction and Building Materials, 409, 134016. doi:10.1016/j.conbuildmat.2023.134016.

Xu, T., Bian, X., Liu, Z., Yang, J., & Zhang, Z. (2023). Local bond stress–slip relationship of ribbed reinforcing bars embedded in UHPC: Experiment, modeling, and verification. Journal of Building Engineering, 68, 106122. doi:10.1016/j.jobe.2023.106122.

Tao, Z., Song, T.-Y., Uy, B., & Han, L.-H. (2016). Bond behavior in concrete-filled steel tubes. Journal of Constructional Steel Research, 120, 81–93. doi:10.1016/j.jcsr.2015.12.030.

Tao, Z., Han, L. H., Uy, B., & Chen, X. (2011). Post-fire bond between the steel tube and concrete in concrete-filled steel tubular columns. Journal of Constructional Steel Research, 67(3), 484–496. doi:10.1016/j.jcsr.2010.09.006.

Feng, R., Chen, Y., He, K., Wei, J., Chen, B., & Zhang, X. (2018). Push-out tests of concrete-filled stainless steel SHS tubes. Journal of Constructional Steel Research, 145, 58–69. doi:10.1016/j.jcsr.2018.02.016.

Guan, M., Lai, Z., Xiao, Q., Du, H., & Zhang, K. (2019). Bond behavior of concrete-filled steel tube columns using manufactured sand (MS-CFT). Engineering Structures, 187, 199-208. doi:10.1016/j.engstruct.2019.02.054.

Lu, Y., Liu, Z., Li, S., & Li, N. (2018). Bond behavior of steel fibers reinforced self-stressing and self-compacting concrete filled steel tube columns. Construction and Building Materials, 158, 894–909. doi:10.1016/j.conbuildmat.2017.10.085.

Wang, L., Chen, H., Zhong, J., Chen, H., Xuan, W., Mi, S., & Yang, H. (2018). Study on the Bond-Slip Performance of CFSSTs Based on Push-Out Tests. Advances in Materials Science and Engineering, 2018, 1–13. doi:10.1155/2018/2959827.

Chen, Z., Tang, J., Zhou, X., Zhou, J., & Chen, J. (2020). Interfacial bond behavior of high strength concrete filled steel tube after exposure to elevated temperatures and cooled by fire hydrant. Materials, 13(1). doi:10.3390/ma13010150.

Almasaeid, H. H., Salman, D. G., Abendeh, R. M., Allouzi, R. A., & Rabayah, H. S. (2024). Interfacial bond capacity prediction of concrete-filled steel tubes utilizing artificial neural network. Cogent Engineering, 11(1), 2297501. doi:10.1080/23311916.2023.2297501.

Guo, Y.-L., Geng, Y., Richard Liew, J. Y., Wang, Y.-Y., & Hong, Z.-H. (2023). Compressive behaviour of circular steel tube confined reinforced concrete (STCRC) columns considering shrinkage and creep. Thin-Walled Structures, 192, 111127. doi:10.1016/j.tws.2023.111127.

Zhang, J., Meng, X., Song, J., Cao, X., & Ma, K. (2023). Push-out tests of interfacial bond slip between H-shaped steel and ultra-high performance concrete. Structures, 57, 105268. doi:10.1016/j.istruc.2023.105268.

Chen, Z., Jia, H., & Li, S. (2022). Bond behavior of recycled aggregate concrete-filled steel tube after elevated temperatures. Construction and Building Materials, 325, 126683. doi:10.1016/j.conbuildmat.2022.126683.

Bahrami, A., & Nematzadeh, M. (2021). Bond behavior of lightweight concrete-filled steel tubes containing rock wool waste after exposure to high temperatures. Construction and Building Materials, 300, 124039. doi:10.1016/j.conbuildmat.2021.124039.

Song, T. Y., Wang, C. H., Liu, X. L., Xiang, K., & Zhou, H. (2023). Post-fire bond behaviour in elliptical concrete filled steel tubes: Experiment and simulation. Journal of Constructional Steel Research, 201, 107725. doi:10.1016/j.jcsr.2022.107725.

Zhao, H., Li, J., Wang, R., Lam, D., & Zhang, Y. (2021). Study on interfacial bond behavior of recycled aggregate concrete filled stainless steel tubes (RAC-FSST). Construction and Building Materials, 313, 125532. doi:10.1016/j.conbuildmat.2021.125532.

Dai, P., Yang, L., Wang, J., Lin, M., & Fan, J. (2022). Bond stress-slip relationship in concrete-filled square stainless steel tubes. Construction and Building Materials, 326, 127001. doi:10.1016/j.conbuildmat.2022.127001.

Parsa-Sharif, M., Nematzadeh, M., & Bahrami, A. (2023). Post-fire load-reversed push-out performance of normal and lightweight concrete-filled steel tube columns: Experiments and predictions. Structures, 51, 1414–1437. doi:10.1016/j.istruc.2023.03.091.

Li, W., Chen, B., Han, L. H., & Packer, J. A. (2022). Pushout tests for concrete-filled double skin steel tubes after exposure to fire. Thin-Walled Structures, 176, 109274. doi:10.1016/j.tws.2022.109274.

Han, L. H., Chen, F., Liao, F. Y., Tao, Z., & Uy, B. (2013). Fire performance of concrete filled stainless steel tubular columns. Engineering Structures, 56, 165–181. doi:10.1016/j.engstruct.2013.05.005.

Ergün, A., Kürklü, G., Serhat Başpnar, M., & Mansour, M. Y. (2013). The effect of cement dosage on mechanical properties of concrete exposed to high temperatures. Fire Safety Journal, 55, 160–167. doi:10.1016/j.firesaf.2012.10.016.

Chan, Y. N., Peng, G. F., & Anson, M. (1999). Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cement and Concrete Composites, 21(1), 23–27. doi:10.1016/S0958-9465(98)00034-1.

Gardner, L., Insausti, A., Ng, K. T., & Ashraf, M. (2010). Elevated temperature material properties of stainless steel alloys. Journal of Constructional Steel Research, 66(5), 634–647. doi:10.1016/j.jcsr.2009.12.016.

Kosmač, A. (2012). Stainless steels at high temperatures. Material and Applications Series, Euro Inox, Brussels, Belgium.

Wang, F.-C., Xie, W.-Q., Li, B., & Han, L.-H. (2022). Experimental study and design of bond behavior in concrete-filled steel tubes (CFST). Engineering Structures, 268, 114750. doi:10.1016/j.engstruct.2022.114750.

Dai, P., Yang, L., Wang, J., Fan, J., & Lin, M. (2021). Experimental study on the steel–concrete bond behaviour of circular concrete-filled stainless steel tubes. Thin-Walled Structures, 169, 108506. doi:10.1016/j.tws.2021.108506.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-03-019

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Ananda Padmanaban, santhi A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message