Enhancing Sustainability and Economics of Concrete Production through Silica Fume: A Systematic Review

Ayedh Mohammad Alhajiri, Mohammad Nadeem Akhtar

Abstract


This review article addresses the problems associated with the carbon footprint of the cement industry. The PRISMA framework methodology was for data extraction from published studies. In-depth research has been done in the literature on using silica fume as a cement replacement in concrete production, considering environmental, engineering, and economic (EEE) factors. The strength, durability, and economic parameters results revealed a positive variation of up to 5–20% substitution of silica fume. However, most past studies reported the threshold at a 10% replacement ratio. A novel benefit-cost ratio analysis was also done in this review study. The benefit-cost ratio analysis reveals the economically beneficial effects that can be achieved in sustainable silica fume-based concrete with a (5–20%) silica fume combination. The benefit-cost ratio showed positive effects, up to 20% cement replacement with silica fume. Hence, the higher cement replacement with silica fume is also beneficial in terms of the benefit-cost ratio. Further research has been proposed based on the findings of this review study.

 

Doi: 10.28991/CEJ-2023-09-10-017

Full Text: PDF


Keywords


CO2 Emission; Silica Fume; Silica Fume-Based Concrete; Benefit-Cost Ratio.

References


Roser, M., Ritchie, H., Ortiz-Ospina, E., & Rodés-Guirao, L. (2017). World Population Growth, Our World in Data. 2017. Available online: https://ourworldindata.org/world-population-growth (accessed on January 2023).

United Nations. (2013). World population prospects: the 2012 revision. Department of Economic and Social Affairs, United Nations, New York, United States.

Bongaarts, J. (2020). United Nations Department of Economic and Social Affairs, Population Division World Family Planning 2020: Highlights, United Nations Publications. Population and Development Review, 46(4), 857–858. doi:10.1111/padr.12377.

Akhtar, M. N., Bani-Hani, K. A., Akhtar, J. N., Khan, R. A., Nejem, J. K., & Zaidi, K. (2022). Flyash-based bricks: an environmental savior—a critical review. Journal of Material Cycles and Waste Management, 24(5), 1663–1678. doi:10.1007/s10163-022-01436-3.

Ahmad Khan, R., Nisar Akhtar, J., Ahmad Khan, R., & Nadeem Akhtar, M. (2023). Experimental study on fine-crushed stone dust a solid waste as a partial replacement of cement. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.03.222.

Alam, J., Khan, M., & Akhtar, M. (2013). Fly ash based brick tiles: An experimental study. International Journal of Emerging Trends in Engineering and Development, 6(3), 35-44.

Ritchie, H., & Roser, M. (2018). Urbanization; Our World in Data. 2018. Available online: https://ourworldindata.org/how-urban-is-the-world (accessed on June 2023).

Akhtar, J. N., Alam, J., & Akhtar, M. N. (2010). An experimental study on fibre reinforced fly ash based lime bricks. International Journal of the Physical Sciences, 5(11), 1688-1695.

Akhtar, M. N., & Akhtar, J. N. (2018). Suitability of Class F Flyash for Construction Industry: An Indian Scenario. International Journal of Structural and Construction Engineering, 12(9), 892-897.

Akhtar, M. N., Hattamleh, O., & Akhtar, J. N. (2017). Feasibility of coal fly ash based bricks and roof tiles as construction materials: A review. MATEC Web of Conferences, 120, 3008. doi:10.1051/matecconf/201712003008.

Rasheed, R., Tahir, F., Afzaal, M., & Ahmad, S. R. (2022). Decomposition analytics of carbon emissions by cement manufacturing – a way forward towards carbon neutrality in a developing country. Environmental Science and Pollution Research, 29(32), 49429–49438. doi:10.1007/s11356-022-20797-8.

Devi, K. S., Lakshmi, V. V., & Alakanandana, A. (2017). Impacts of cement industry on environment-an overview. Asia Pacific Journal of Research, 1, 156-161.

Akhtar, M. N., AKhtar, J. N., & Hattamleh, O. (2013). The Study of Fibre Reinforced Fly Ash Lime Stone Dust Bricks With Glass Powder. International Journal of Engineering and Advanced Technology, 3(1), 314-319.

Vig, N., Mor, S., & Ravindra, K. (2023). The multiple value characteristics of fly ash from Indian coal thermal power plants: a review. Environmental Monitoring and Assessment, 195(1), 33. doi:10.1007/s10661-022-10473-2.

Habert, G. (2014). Assessing the environmental impact of conventional and ‘green’ cement production. Eco-Efficient Construction and Building Materials, 199–238, Woodhead Publishing, Sawston, United Kingdom. doi:10.1533/9780857097729.2.199.

Wojtacha-Rychter, K., Kucharski, P., & Smolinski, A. (2021). Conventional and alternative sources of thermal energy in the production of cement—an impact on CO2 emission. Energies, 14(6), 1539. doi:10.3390/en14061539.

Henrion, L., Zhang, D., Li, V. C., & Sick, V. (2021). Bendable concrete and other CO2-infused cement mixes could dramatically cut global emissions. World Economic Forum, Carlton, Australia. Available online: https://theconversation.com/bendable-concrete-and-other-co2-infused-cement-mixes-could-dramatically-cut-global-emissions-152544 (accessed on July 2023).

Akhtar, M. N., Jameel, M., Ibrahim, Z., Muhamad Bunnori, N., & Bani-Hani, K. A. (2023). Development of sustainable modified sand concrete: An experimental study. Ain Shams Engineering Journal, 102331. doi:10.1016/j.asej.2023.102331.

Akhtar, J. N., & Akhtar, M. N. (2014). Enhancement in properties of concrete with demolished waste aggregate. GE-International Journal of Engineering Research, 2(9), 73-83.

Jiang, X., Xiao, R., Bai, Y., Huang, B., & Ma, Y. (2022). Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. Journal of Cleaner Production, 340, 130778. doi:10.1016/j.jclepro.2022.130778.

Williams, K. C., & Partheeban, P. (2018). An experimental and numerical approach in strength prediction of reclaimed rubber concrete. Advances in Concrete Construction, 6(1), 87–102. doi:10.12989/acc.2018.6.1.087.

Akhtar, M., Halahla, A., & Almasri, A. (2021). Experimental Study on Compressive Strength of Recycled Aggregate Concrete under High Temperature. Structural Durability & Health Monitoring, 15(4), 335–348. doi:10.32604/sdhm.2021.015988.

Akhtar, M. N., Al-Shamrani, A. M., Jameel, M., Khan, N. A., Ibrahim, Z., & Akhtar, J. N. (2021). Stability and permeability characteristics of porous asphalt pavement: An experimental case study. Case Studies in Construction Materials, 15, 591. doi:10.1016/j.cscm.2021.e00591.

Akhtar, M. N., Jameel, M., Ibrahim, Z., & Bunnori, N. M. (2022). Incorporation of recycled aggregates and silica fume in concrete: an environmental savior-a systematic review. Journal of Materials Research and Technology, 20, 4525–4544. doi:10.1016/j.jmrt.2022.09.021.

Nisar Akhtar, J., Ahmad Khan, R., Ahmad Khan, R., Nadeem Akhtar, M., & Thomas, B. S. (2023). A comparative study of strength and durability characteristics of concrete and mortar admixture by bacterial calcite precipitation: A review. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.03.490.

Vijayan, D. S., Devarajan, P., & Sivasuriyan, A. (2023). A review on eminent application and performance of nano based silica and silica fume in the cement concrete. Sustainable Energy Technologies and Assessments, 56, 103105. doi:10.1016/j.seta.2023.103105.

Li, B., Gao, A., Li, Y., Xiao, H., Chen, N., Xia, D., Wang, S., & Li, C. (2023). Effect of silica fume content on the mechanical strengths, compressive stress–strain behavior and microstructures of geopolymeric recycled aggregate concrete. Construction and Building Materials, 384, 131417. doi:10.1016/j.conbuildmat.2023.131417.

Chishi, A. K., & Gautam, L. (2023). Sustainable use of silica fume in green cement concrete production: a review. Innovative Infrastructure Solutions, 8(7), 195. doi:10.1007/s41062-023-01164-z.

Etli, S. (2023). Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate. Journal of Cleaner Production, 384, 135590. doi:10.1016/j.jclepro.2022.135590.

Ashraf, M., Iqbal, M. F., Rauf, M., Ashraf, M. U., Ulhaq, A., Muhammad, H., & Liu, Q. Feng. (2022). Developing a sustainable concrete incorporating bentonite clay and silica fume: Mechanical and durability performance. Journal of Cleaner Production, 337, 130315. doi:10.1016/j.jclepro.2021.130315.

Fallah-Valukolaee, S., Mousavi, R., Arjomandi, A., Nematzadeh, M., & Kazemi, M. (2022). A comparative study of mechanical properties and life cycle assessment of high-strength concrete containing silica fume and nanosilica as a partial cement replacement. Structures, 46, 838–851. doi:10.1016/j.istruc.2022.10.024.

Ahmad, S., Baghabra Al-Amoudi, O. S., Khan, S. M. S., & Maslehuddin, M. (2022). Effect of silica fume inclusion on the strength, shrinkage and durability characteristics of natural pozzolan-based cement concrete. Case Studies in Construction Materials, 17, 1255. doi:10.1016/j.cscm.2022.e01255.

Othuman Mydin, M. A. (2015). Effect of silica fume and wood ash additions on flexural and splitting tensile strength of lightweight foamed concrete. Jurnal Teknologi, 74(1), 125–129. doi:10.11113/jt.v74.3653.

Srivastava, V., Kumar, R., Agarwal, V. C., & Mehta, P. K. (2014). Effect of silica fume on workability and compressive strength of OPC concrete. Journal of Environmental Nanotechnology, 3(2), 32-35. doi:10.13074/jent.2014.09.143086.

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical Epidemiology, 62(10), 1006–1012. doi:10.1016/j.jclinepi.2009.06.005.

Callery, S. (2021). What is the greenhouse effect?, Global Climate Change, NASA Jet Propulsion Laboratory, Pasadena, United States. Available online: https://climate.nasa.gov/faq/19/what-is-the-greenhouse-effect/ (accessed on September 2023).

Benhelal, E., Shamsaei, E., & Rashid, M. I. (2021). Challenges against CO2 abatement strategies in cement industry: A review. Journal of Environmental Sciences (China), 104, 84–101. doi:10.1016/j.jes.2020.11.020.

Perrone, T. (2010). The history of climate change conferences, also known as COPs. Life Gate, Milano – Italy. Available online: https://www.lifegate.com/history-climate-change-conferences (accessed on September 2023).

Hunter, D. B., Salzman, J. E., & Zaelke, D. (2021). Glasgow Climate Summit: Cop26. SSRN Electronic Journal. doi:10.2139/ssrn.4005648.

Wilson, N., & Rae, K. (2022). Report from a COP-26 public participation event. Mental Health Foundation, Glasgow, Scotland.

IEA. (2020). Reducing CO2 Emissions while Producing Enough Cement to Meet Demand Is a Global Challenge, Especially since Demand Growth Is Expected to Resume. International Energy Agency (IEA), Paris, France. Available online: https://www.iea.org/energy-system/industry/cement (accessed on 13 March 2022).

Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26(1), 303–329. doi:10.1146/annurev.energy.26.1.303.

Mishra, L. C., & Shukla, K. N. (1986). Effects of fly ash deposition on growth, metabolism and dry matter production of maize and soybean. Environmental Pollution Series A, Ecological and Biological, 42(1), 1–13. doi:10.1016/0143-1471(86)90040-1.

Falah, M. W., Hafedh, A. A., Hussein, S. A., Al-Khafaji, Z. S., Shubbar, A. A., & Nasr, M. S. (2021). The combined effect of CKD and silica fume on the mechanical and durability performance of cement mortar. Key Engineering Materials, 895, 59–67. doi:10.4028/www.scientific.net/KEM.895.59.

Andrew, R. M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10(1), 195–217. doi:10.5194/essd-10-195-2018.

Andrew, R. M. (2019). Global CO2 emissions from cement production, 1928–2018. Earth System Science Data, 11(4), 1675–1710. doi:10.5194/essd-11-1675-2019.

Taylor, M., Tam, C., & Gielen, D. (2006). Energy efficiency and CO2 emissions from the global cement industry. Korea, 50(2.2), 61-67.

Panjaitan, T. W. S., Dargusch, P., Wadley, D., & Aziz, A. A. (2021). Meeting international standards of cleaner production in developing countries: Challenges and financial realities facing the Indonesian cement industry. Journal of Cleaner Production, 318, 128604. doi:10.1016/j.jclepro.2021.128604.

Dinga, C. D., & Wen, Z. (2022). China’s green deal: Can China’s cement industry achieve carbon neutral emissions by 2060? Renewable and Sustainable Energy Reviews, 155, 111931. doi:10.1016/j.rser.2021.111931.

Lim, C., Jung, E., Lee, S., Jang, C., Oh, C., & Nam Shin, K. (2020). Global Trend of Cement Production and Utilization of Circular Resources. Journal of Energy Engineering, 29(3), 57–63. doi:10.5855/ENERGY.2020.29.3.057.

Mokhtar, A., & Nasooti, M. (2020). A decision support tool for cement industry to select energy efficiency measures. Energy Strategy Reviews, 28, 100458. doi:10.1016/j.esr.2020.100458.

Shen, W., Cao, L., Li, Q., Zhang, W., Wang, G., & Li, C. (2015). Quantifying CO2 emissions from China’s cement industry. Renewable and Sustainable Energy Reviews, 50, 1004–1012. doi:10.1016/j.rser.2015.05.031.

Boisseau-Bouvier, É., & Cameron, L. (2022). Identifying Inefficient Fossil Fuel Subsidies in Canada. International Institute for Sustainable Development & Équiterre, Geneva, Switzerland.

Ghalehnovi, M., Roshan, N., Taghizadeh, A., Asadi Shamsabadi, E., Ali Hadigheh, S., & de Brito, J. (2022). Production of Environmentally Friendly Concrete Incorporating Bauxite Residue and Silica Fume. Journal of Materials in Civil Engineering, 34(2), 4021423. doi:10.1061/(asce)mt.1943-5533.0004060.

Billong, N., Oti, J., & Kinuthia, J. (2021). Using silica fume based activator in sustainable geopolymer binder for building application. Construction and Building Materials, 275, 122177. doi:10.1016/j.conbuildmat.2020.122177.

Tak, S., Gupta, P., Kumar, A., Sofi, A., & Mei Yun, C. (2023). Effect of using silica fume as a partial replacement of cement in concrete. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.04.205.

Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K. S., & Singh, M. (2020). Environmental impact assessment of fly ash and silica fume based geopolymer concrete. Journal of Cleaner Production, 254, 120147. doi:10.1016/j.jclepro.2020.120147.

Cong, P., & Mei, L. (2021). Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum. Construction and Building Materials, 275, 122171. doi:10.1016/j.conbuildmat.2020.122171.

Singh, L., Kumar, A., & Singh, A. (2016). Study of Partial Replacement of Cement by Silica Fume. International Journal of Advanced Research, 4(7), 104–120. doi:10.21474/ijar01/1016.

Mohyiddeen, M., & Maya, T. M. (2015). Effect of silica fume on concrete containing copper slag as fine aggregate. International Journal of Research in Advent Technology, Special Issue International Conference on Technological Advancements in Structures and Construction, TASC- 15, 55-59.

Luo, T., Hua, C., Liu, F., Sun, Q., Yi, Y., & Pan, X. (2022). Effect of adding solid waste silica fume as a cement paste replacement on the properties of fresh and hardened concrete. Case Studies in Construction Materials, 16, 1048. doi:10.1016/j.cscm.2022.e01048.

Siddique, R. (2011). Utilization of silica fume in concrete: Review of hardened properties. Resources, Conservation and Recycling, 55(11), 923–932. doi:10.1016/j.resconrec.2011.06.012.

Khan, M. I., & Siddique, R. (2011). Utilization of silica fume in concrete: Review of durability properties. Resources, Conservation and Recycling, 57, 30–35. doi:10.1016/j.resconrec.2011.09.016.

Siddique, R., & Chahal, N. (2011). Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar. Resources, Conservation and Recycling, 55(8), 739–744. doi:10.1016/j.resconrec.2011.03.004.

Mastali, M., & Dalvand, A. (2016). Use of silica fume and recycled steel fibers in self-compacting concrete (SCC). Construction and Building Materials, 125, 196–209. doi:10.1016/j.conbuildmat.2016.08.046.

Hasan-Nattaj, F., & Nematzadeh, M. (2017). The effect of forta-ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica. Construction and Building Materials, 137, 557–572. doi:10.1016/j.conbuildmat.2017.01.078.

Fallah, S., & Nematzadeh, M. (2017). Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Construction and Building Materials, 132, 170–187. doi:10.1016/j.conbuildmat.2016.11.100.

Wu, Z., Shi, C., & Khayat, K. H. (2016). Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cement and Concrete Composites, 71, 97–109. doi:10.1016/j.cemconcomp.2016.05.005.

Ju, Y., Tian, K., Liu, H., Reinhardt, H. W., & Wang, L. (2017). Experimental investigation of the effect of silica fume on the thermal spalling of reactive powder concrete. Construction and Building Materials, 155, 571–583. doi:10.1016/j.conbuildmat.2017.08.086.

Soliman, N. A., & Tagnit-Hamou, A. (2017). Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap. Construction and Building Materials, 139, 374–383. doi:10.1016/j.conbuildmat.2017.02.084.

Pedro, D., de Brito, J., & Evangelista, L. (2017). Evaluation of high-performance concrete with recycled aggregates: Use of densified silica fume as cement replacement. Construction and Building Materials, 147, 803–814. doi:10.1016/j.conbuildmat.2017.05.007.

Rostami, M., & Behfarnia, K. (2017). The effect of silica fume on durability of alkali activated slag concrete. Construction and Building Materials, 134, 262–268. doi:10.1016/j.conbuildmat.2016.12.072.

Karthikeyan, B., & Dhinakaran, G. (2018). Influence of ultrafine TiO2 and silica fume on performance of unreinforced and fiber reinforced concrete. Construction and Building Materials, 161, 570–576. doi:10.1016/j.conbuildmat.2017.11.133.

Bajja, Z., Dridi, W., Darquennes, A., Bennacer, R., Le Bescop, P., & Rahim, M. (2017). Influence of slurried silica fume on microstructure and tritiated water diffusivity of cement pastes. Construction and Building Materials, 132, 85–93. doi:10.1016/j.conbuildmat.2016.11.097.

Wang, L., Zhou, S. H., Shi, Y., Tang, S. W., & Chen, E. (2017). Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete. Composites Part B: Engineering, 130, 28–37. doi:10.1016/j.compositesb.2017.07.058.

Rastogi, A., & Paul, V. K. (2020). A critical review of the potential for fly ash utilisation in construction-specific applications in India. Environmental Research, Engineering and Management, 76(2), 65–75. doi:10.5755/J01.EREM.76.2.25166.

Zhang, Y., Fan, Z., Sun, X., & Zhu, X. (2022). Utilization of surface-modified fly ash cenosphere waste as an internal curing material to intensify concrete performance. Journal of Cleaner Production, 358, 132042. doi:10.1016/j.jclepro.2022.132042.

Orozco, C., Tangtermsirikul, S., Sugiyama, T., & Babel, S. (2023). Examining the endpoint impacts, challenges, and opportunities of fly ash utilization for sustainable concrete construction. Scientific Reports, 13(1), 18254. doi:10.1038/s41598-023-45632-z.

Alam, J., & Akhtar, M. N. (2011). Fly ash utilization in different sectors in Indian scenario. International Journal of Emerging Trends in Engineering and Development, 1(1), 1-14.

Akhtar, M. N., Khan, M. A., & Akhtar, J. (2014). Use of the falling-head method to assess permeability of fly ash based roof tiles with waste polythene fibre. International Journal of Scientific & Engineering Research, 5, 476-483.

Hattamleh, O. H. A., Al-Deeky, H. H., & Akhtar, M. N. (2013). The Consequence of Particle Crushing in Engineering Properties of Granular Materials. International Journal of Geosciences, 04(07), 1055–1060. doi:10.4236/ijg.2013.47099.

Adil, G., Kevern, J. T., & Mann, D. (2020). Influence of silica fume on mechanical and durability of pervious concrete. Construction and Building Materials, 247, 118453. doi:10.1016/j.conbuildmat.2020.118453.

Nochaiya, T., Wongkeo, W., & Chaipanich, A. (2010). Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete. Fuel, 89(3), 768–774. doi:10.1016/j.fuel.2009.10.003.

Sasanipour, H., Aslani, F., & Taherinezhad, J. (2019). Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates. Construction and Building Materials, 227, 116598. doi:10.1016/j.conbuildmat.2019.07.324.

Khodabakhshian, A., Ghalehnovi, M., de Brito, J., & Asadi Shamsabadi, E. (2018). Durability performance of structural concrete containing silica fume and marble industry waste powder. Journal of Cleaner Production, 170, 42–60. doi:10.1016/j.jclepro.2017.09.116.

Memon, F. A., Nuruddin, M. F., & Shafiq, N. (2013). Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete. International Journal of Minerals, Metallurgy, and Materials, 20(2), 205–213. doi:10.1007/s12613-013-0714-7.

Keerio, M. A., Abbasi, S. A., Kumar, A., Bheel, N., Rehaman, K. Ur, & Tashfeen, M. (2022). Effect of Silica Fume as Cementitious Material and Waste Glass as Fine Aggregate Replacement Constituent on Selected Properties of Concrete. Silicon, 14(1), 165–176. doi:10.1007/s12633-020-00806-6.

Kumar, A., Bheel, N., Ahmed, I., Rizvi, S. H., Kumar, R., & Jhatial, A. A. (2022). Effect of silica fume and fly ash as cementitious material on hardened properties and embodied carbon of roller compacted concrete. Environmental Science and Pollution Research, 29(1), 1210–1222. doi:10.1007/s11356-021-15734-0.

Farahani, A., Taghaddos, H., & Shekarchi, M. (2015). Prediction of long-term chloride diffusion in silica fume concrete in a marine environment. Cement and Concrete Composites, 59, 10–17. doi:10.1016/j.cemconcomp.2015.03.006.

Imam, A., Kumar, V., & Srivastava, V. (2018). Review study towards effect of Silica Fume on the fresh and hardened properties of concrete. Advances in Concrete Construction, 6(2), 145–157. doi:10.12989/acc.2018.6.2.145.

Mustapha, F. A., Sulaiman, A., Mohamed, R. N., & Umara, S. A. (2019). The effect of fly ash and silica fume on self-compacting high-performance concrete. Materials Today: Proceedings, 39, 965–969. doi:10.1016/j.matpr.2020.04.493.

Xu, W., Zhang, Y., & Liu, B. (2020). Influence of silica fume and low curing temperature on mechanical property of cemented paste backfill. Construction and Building Materials, 254, 119305. doi:10.1016/j.conbuildmat.2020.119305.

Youm, K. S., Moon, J., Cho, J. Y., & Kim, J. J. (2016). Experimental study on strength and durability of lightweight aggregate concrete containing silica fume. Construction and Building Materials, 114, 517–527. doi:10.1016/j.conbuildmat.2016.03.165.

Poornima, V., Sindhu, S., Arunachaleshwaran, A., Girish, R., Imthiyaz Ahamed, K., & Nerainjan Isai, I. (2019). Effect of silica fume and limestone powder on abrasion resistance of OPC and PPC concrete. Materials Today: Proceedings, 46, 5123–5130. doi:10.1016/j.matpr.2020.10.503.

Verma, S. K., Singla, C. S., Nadda, G., & Kumar, R. (2020). Development of sustainable concrete using silica fume and stone dust. Materials Today: Proceedings, 32, 882–887. doi:10.1016/j.matpr.2020.04.364.

Turk, K., Karatas, M., & Gonen, T. (2013). Effect of Fly Ash and Silica Fume on compressive strength, sorptivity and carbonation of SCC. KSCE Journal of Civil Engineering, 17(1), 202–209. doi:10.1007/s12205-013-1680-3.

Khan, M., Rehman, A., & Ali, M. (2020). Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road. Construction and Building Materials, 244, 118382. doi:10.1016/j.conbuildmat.2020.118382.

Muhit, I. B., Ahmed, S. S., Amin, M. M., & Raihan, M. T. (2013, December). Effects of silica fume and fly ash as partial replacement of cement on water permeability and strength of high performance concrete. 4th International Conference on Advances in Civil Engineering, 13-14 December, 2013, New Delhi, India.

Albattat, R. A. I., Jamshidzadeh, Z., & Alasadi, A. K. R. (2020). Assessment of compressive strength and durability of silica fume-based concrete in acidic environment. Innovative Infrastructure Solutions, 5, 20. doi:10.1007/s41062-020-0269-1.

Saba, A. M., Khan, A. H., Akhtar, M. N., Khan, N. A., Rahimian Koloor, S. S., Petru, M., & Radwan, N. (2021). Strength and flexural behavior of steel fiber and silica fume incorporated self-compacting concrete. Journal of Materials Research and Technology, 12, 1380–1390. doi:10.1016/j.jmrt.2021.03.066.

Ismail, A. J., Younis, K. H., & Maruf, S. M. (2020). Recycled Aggregate Concrete Made with Silica Fume: Experimental Investigation. Civil Engineering and Architecture, 8(5), 1136–1143. doi:10.13189/cea.2020.080540.

Jamle, S., Chouhan, P., & Verma, M. P. (2017). Effect of Silica Fume on Strength Parameters of Concrete as a Partial Substitution of Cement. International Journal for Science and Advance Research in Technology, 3(5), 968–972.

Hemavathi, S., Sumil Kumaran, A., & Sindhu, R. (2020). An experimental investigation on properties of concrete by using silica fume and glass fibre as admixture. Materials Today: Proceedings, 21, 456–459. doi:10.1016/j.matpr.2019.06.558.

Cheah, C. B., & Nurshafarina, J. (2019). Preliminary study on influence of silica fume on mechanical properties of no-cement mortars. IOP Conference Series: Materials Science and Engineering, 513(1), 12025. doi:10.1088/1757-899X/513/1/012025.

Ajileye, F. V. (2012). Investigations on microsilica (silica fume) as partial cement replacement in concrete. Global Journal of Research In Engineering, 12(1-E).

Katkhuda, H., Hanayneh, B., & Shatarat, N. (2009). Influence of silica fume on high strength lightweight concrete. International Journal of Civil and Environmental Engineering, 3(10), 407-414.

Khan, M., & Ali, M. (2019). Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Construction and Building Materials, 203, 174–187. doi:10.1016/j.conbuildmat.2019.01.103.

Pradhan, D., & Dutta, D. (2013). Influence of silica fume on normal concrete. International Journal of Engineering Research and Applications, 3(5), 79-82.

Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2016). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International, 42(2), 3000–3006. doi:10.1016/j.ceramint.2015.10.084.

Ahmad, O. A. (2017). Production of High-Performance Silica Fume Concrete. American Journal of Applied Sciences, 14(11), 1031–1038. doi:10.3844/ajassp.2017.1031.1038.

Liu, H., Elchalakani, M., Karrech, A., Yehia, S., & Yang, B. (2021). High strength flowable lightweight concrete incorporating low C3A cement, silica fume, stalite and macro-polyfelin polymer fibres. Construction and Building Materials, 281, 122410. doi:10.1016/j.conbuildmat.2021.122410.

Smarzewski, P. (2019). Influence of silica fume on mechanical and fracture properties of high-performance concrete. Procedia Structural Integrity, 17, 5–12. doi:10.1016/j.prostr.2019.08.002.

Wang, J., Xie, J., He, J., Sun, M., Yang, J., & Li, L. (2020). Combined use of silica fume and steel fibre to improve fracture properties of recycled aggregate concrete exposed to elevated temperature. Journal of Material Cycles and Waste Management, 22(3), 862–877. doi:10.1007/s10163-020-00990-y.

Valipour, M., Pargar, F., Shekarchi, M., & Khani, S. (2013). Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Construction and Building Materials, 41, 879–888. doi:10.1016/j.conbuildmat.2012.11.054.

Bahadori, H., & Hosseini, P. (2012). Reduction of cement consumption by the aid of silica nano-particles (investigation on concrete properties). Journal of Civil Engineering and Management, 18(3), 416–425. doi:10.3846/13923730.2012.698912.

Mohan, A., & Mini, K. M. (2018). Strength Studies of SCC Incorporating Silica Fume and Ultra-Fine GGBS. Materials Today: Proceedings, 5(11), 23752–23758. doi:10.1016/j.matpr.2018.10.166.

Mehta, A., & Ashish, D. K. (2020). Silica fume and waste glass in cement concrete production: A review. Journal of Building Engineering, 29, 100888. doi:10.1016/j.jobe.2019.100888.

Chu, S. H., & Kwan, A. K. H. (2019). Co-addition of metakaolin and silica fume in mortar: effects and advantages. Construction and Building Materials, 197, 716–724. doi:10.1016/j.conbuildmat.2018.11.244.

Motahari Karein, S. M., Ramezanianpour, A. A., Ebadi, T., Isapour, S., & Karakouzian, M. (2017). A new approach for application of silica fume in concrete: Wet granulation. Construction and Building Materials, 157, 573–581. doi:10.1016/j.conbuildmat.2017.09.132.

Demirel, B., & Keleştemur, O. (2010). Effect of elevated temperature on the mechanical properties of concrete produced with finely ground pumice and silica fume. Fire Safety Journal, 45(6–8), 385–391. doi:10.1016/j.firesaf.2010.08.002.

Ahmad, S., Umar, A., Masood, A., & Nayeem, M. (2019). Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume. Advances in Concrete Construction, 7(1), 31–37. doi:10.12989/acc.2019.7.1.031.

Mahalakshmi, S. H. V., & Khed, V. C. (2020). Experimental study on M-sand in self-compacting concrete with and without silica fume. Materials Today: Proceedings, 27, 1061–1065. doi:10.1016/j.matpr.2020.01.432.

Siddique, R., Jameel, A., Singh, M., Barnat-Hunek, D., Kunal, Aït-Mokhtar, A., Belarbi, R., & Rajor, A. (2017). Effect of bacteria on strength, permeation characteristics and micro-structure of silica fume concrete. Construction and Building Materials, 142, 92–100. doi:10.1016/j.conbuildmat.2017.03.057.

Salman Rais, M., & Ahmad Khan, R. (2021). Effect of biomineralization technique on the strength and durability characteristics of recycled aggregate concrete. Construction and Building Materials, 290, 123280. doi:10.1016/j.conbuildmat.2021.123280.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-10-017

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Mohammad Nadeem Akhtar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message