Evaluating Carbon Footprint in the Life Cycle Design of Residential Concrete Structures in Jordan
Abstract
Doi: 10.28991/CEJ-2023-09-07-07
Full Text: PDF
Keywords
References
Solís-Guzmán, J., Rivero-Camacho, C., Alba-Rodríguez, D., & Martínez-Rocamora, A. (2018). Carbon footprint estimation tool for residential buildings for non-specialized users: OERCO2 project. Sustainability (Switzerland), 10(5), 51359. doi:10.3390/su10051359.
Ametepey, S. O., & Ansah, S. K. (2014). Impacts of construction activities on the environment: the case of Ghana. Journal of Construction Project Management and Innovation, 4(sup-1), 934-948.
Zhou, P., & Wang, M. (2016). Carbon dioxide emissions allocation: A review. Ecological Economics, 125, 47–59. doi:10.1016/j.ecolecon.2016.03.001.
Kim, T. H., Chae, C. U., Kim, G. H., & Jang, H. J. (2016). Analysis of CO2 emission characteristics of concrete used at construction sites. Sustainability (Switzerland), 8(4). doi:10.3390/su8040348.
Mardiana, A., & Riffat, S. B. (2015). Building energy consumption and carbon dioxide emissions: threat to climate change. Journal of Earth Science & Climatic Change, 2015(S3), 1-3. doi:10.4172/2157-7617.s3-001.
Hasanbeigi, A., Price, L., & Lin, E. (2012). Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renewable and Sustainable Energy Reviews, 16(8), 6220-6238. doi:10.1016/j.rser.2012.07.019.
Jahandideh, F., Raman, S. N., Jamil, M., & Syed, Z. I. (2020). Carbon footprint assessment in the life-cycle design of concrete structures in the tropics: A case study of residential buildings in Malaysia. Journal of Design and Built Environment, 20(2), 27–34. doi:10.22452/jdbe.vol20no2.3.
Latawiec, R., Woyciechowski, P., & Kowalski, K. (2018). Sustainable Concrete Performance -CO2-Emission. Environments, 5(2), 27. doi:10.3390/environments5020027.
Garcez, M. R., Rohden, A. B., & Graupner de Godoy, L. G. (2018). The role of concrete compressive strength on the service life and life cycle of a RC structure: Case study. Journal of Cleaner Production, 172, 27–38. doi:10.1016/j.jclepro.2017.10.153.
Sizirici, B., Fseha, Y., Cho, C. S., Yildiz, I., & Byon, Y. J. (2021). A review of carbon footprint reduction in construction industry, from design to operation. Materials, 14(20), 6094. doi:10.3390/ma14206094.
Paik, I., & Na, S. (2019). Comparison of carbon dioxide emissions of the ordinary reinforced concrete slab and the voided slab system during the construction phase: A case study of a residential building in South Korea. Sustainability (Switzerland), 11(13), 33571. doi:10.3390/su11133571.
Gursel, A. P. (2014). Life-cycle assessment of concrete: decision-support tool and case study application. Ph.D. Thesis, University of California, Berkeley, United States.
Purnell, P. (2013). The carbon footprint of reinforced concrete. Advances in Cement Research, 25(6), 362–368. doi:10.1680/adcr.13.00013.
Islam, H., Zhang, G., Setunge, S., & Bhuiyan, M. A. (2016). Life cycle assessment of shipping container home: A sustainable construction. Energy and Buildings, 128, 673–685. doi:10.1016/j.enbuild.2016.07.002.
Czarnecki, L., & Justnes, H. (2012). Sustainable & durable concrete. Cement Lime Concrete, 6, 341.
Kajaste, R., & Hurme, M. (2016). Cement industry greenhouse gas emissions - Management options and abatement cost. Journal of Cleaner Production, 112, 4041–4052. doi:10.1016/j.jclepro.2015.07.055.
Jensen, A. A. (1998). Life cycle assessment (LCA): a guide to approaches, experiences and information sources. Environmental issue report No 6. European Environment Agency, Copenhagen, Denmark.
Preece, J., Crawford, J., McKee, K., Flint, J., & Robinson, D. (2020). Understanding changing housing aspirations: a review of the evidence. Housing Studies, 35(1), 87–106. doi:10.1080/02673037.2019.1584665.
Chen, W., Yang, S., Zhang, X., Jordan, N. D., & Huang, J. (2022). Embodied energy and carbon emissions of building materials in China. Building and Environment, 207, 108434. doi:10.1016/j.buildenv.2021.108434.
Alotaibi, B. S., Khan, S. A., Abuhussain, M. A., Al-Tamimi, N., Elnaklah, R., & Kamal, M. A. (2022). Life Cycle Assessment of Embodied Carbon and Strategies for Decarbonization of a High-Rise Residential Building. Buildings, 12(8), 1203. doi:10.3390/buildings12081203.
Evangelista, P. P. A., Kiperstok, A., Torres, E. A., & Gonçalves, J. P. (2018). Environmental performance analysis of residential buildings in Brazil using life cycle assessment (LCA). Construction and Building Materials, 169, 748–761. doi:10.1016/j.conbuildmat.2018.02.045.
Robayo-Salazar, R., Mejía-Arcila, J., Mejía de Gutiérrez, R., & Martínez, E. (2018). Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Construction and Building Materials, 176, 103–111. doi:10.1016/j.conbuildmat.2018.05.017.
Ahmed, I. M., & Tsavdaridis, K. D. (2018). Life cycle assessment (LCA) and cost (LCC) studies of lightweight composite flooring systems. Journal of Building Engineering, 20, 624–633. doi:10.1016/j.jobe.2018.09.013.
Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394–416. doi:10.1016/j.rser.2013.08.037.
Urban Land Institute. (2014). The Macro View on Micro Units. Urban Land Institute, Washington, United States. Available online: https://uli.org/wp-content/uploads/ULI-Documents/MicroUnit_full_rev_2015.pdf (accessed on April 2023).
Maisam Synopsis, C. (2015). Residential Projects Company Synopsis. Available online: http://www.maisam.com.jo/sites/ default/files/Residential.pdf (accessed on April 2023).
DOI: 10.28991/CEJ-2023-09-07-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 omar al-omari
This work is licensed under a Creative Commons Attribution 4.0 International License.