Effect of Cooling Conditions, Retrofitting on Strength of Concrete Subjected to Elevated Temperature

Swapnil B. Kharmale, Pramod S. Sathe, Yashwant A. Kolekar

Abstract


Concrete has a high degree of fire resistance at moderate temperatures. High temperatures, however, cause concrete to lose its stiffness and strength. The effects of cooling techniques and retrofitting on the strength of concrete exposed to high temperatures have not been synchronized in previous studies. This experimental research aims to evaluate the effect of cooling conditions and the effectiveness of retrofitting concrete subjected to elevated temperatures. Four types of concrete: M 20 normal concrete (NC); M 20 metakaolin concrete (MC); M 40 standard concrete (SC); and M 40 self-compacting concrete (SCC) are considered in this study. A total of 864 samples consisting of cube, beam, and cylinder specimens are subjected to sustained elevated temperatures of 400oC, 600oC, and 800oC for 2 hours rating. The weight and strength of half of the heat-damaged samples are assessed following natural air cooling (NAC) and water jet cooling (WJC). The remaining 50% of samples retrofitted with carbon fiber reinforced polymer (CFRP) are tested to evaluate the upgraded strength. The experimental findings demonstrate that water jet cooling (WJC) causes more strength degradation, and CFRP proves to be effective in restoring the strength of heat-deteriorated specimens. Overall, self-compacting concrete (SCC) has shown high resistance to elevated temperatures.

 

Doi: 10.28991/CEJ-2023-09-07-013

Full Text: PDF


Keywords


Fire Resistance; Natural Air Cooling (NAC); Water Jet Cooling (WJC); Carbon Fiber Reinforced Polymer (CFRP).

References


IS-1642. (1989). Code of practice for fire safety of buildings (general): Details of construction. Bureau of Indian Standards. New Delhi, India.

EN 13501-1. (2018). Fire classification of construction products and building elements. Part 1: Classification using data from reaction to fire tests. European Committee for Standardization (CEN), Brussels, Belgium.

ACI 216.1-14. (2014). Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies.” American Concrete Institute. Michigan, United States.

Ma, Q., Guo, R., Zhao, Z., Lin, Z., & He, K. (2015). Mechanical properties of concrete at high temperature-A review. Construction and Building Materials, 93, 371–383. doi:10.1016/j.conbuildmat.2015.05.131.

Arioz, O. (2007). Effects of elevated temperatures on properties of concrete. Fire Safety Journal, 42(8), 516–522. doi:10.1016/j.firesaf.2007.01.003.

Chen, B., Li, C., & Chen, L. (2009). Experimental study of mechanical properties of normal-strength concrete exposed to high temperatures at an early age. Fire Safety Journal, 44(7), 997–1002. doi:10.1016/j.firesaf.2009.06.007.

Hager, I. (2013). Behaviour of cement concrete at high temperature. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(1), 145–154. doi:10.2478/bpasts-2013-0013.

Kodur, V. (2014). Properties of concrete at elevated temperatures. ISRN Civil Engineering, 1–15. doi:10.1155/2014/468510.

Krishna, D. A., Priyadarsini, R. S., & Narayanan, S. (2019). Effect of Elevated Temperatures on the Mechanical Properties of Concrete. Procedia Structural Integrity, 14, 384–394. doi:10.1016/j.prostr.2019.05.047.

Endait, M., & Wagh, S. (2020). Effect of elevated temperature on mechanical properties of early-age concrete. Innovative Infrastructure Solutions, 5(1), 4. doi:10.1007/s41062-019-0254-8.

Sideris, K. K. (2007). Mechanical Characteristics of Self-Consolidating Concretes Exposed to Elevated Temperatures. Journal of Materials in Civil Engineering, 19(8), 648–654. doi:10.1061/(asce)0899-1561(2007)19:8(648).

Behnood, A., & Ghandehari, M. (2009). Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Safety Journal, 44(8), 1015–1022. doi:10.1016/j.firesaf.2009.07.001.

Varghese, A., Anand, N., & Arulraj, P. G. (2020). Influence of Fiber on Shear Behavior of Concrete Exposed to Elevated Temperature. International Journal of Engineering, 33(10). doi:10.5829/ije.2020.33.10a.08.

Kodur, V., & Khaliq, W. (2011). Effect of Temperature on Thermal Properties of Different Types of High-Strength Concrete. Journal of Materials in Civil Engineering, 23(6), 793–801. doi:10.1061/(asce)mt.1943-5533.0000225.

Sengul, O. (2018). Mechanical properties of slurry infiltrated fiber concrete produced with waste steel fibers. Construction and Building Materials, 186, 1082-1091. doi:10.1016/j.conbuildmat.2018.08.042.

Al-Radi, H. H. Y., Dejian, S., & Sultan, H. K. (2021). Performance of fiber self-compacting concrete at high temperatures. Civil Engineering Journal, 7(12), 2083–2098. doi:10.28991/cej-2021-03091779.

Khan, M. S., Prasad, J., & Abbas, H. (2013). Effect of High Temperature on High-Volume Fly Ash Concrete. Arabian Journal for Science and Engineering, 38(6), 1369–1378. doi:10.1007/s13369-013-0606-1.

Tanyildizi, H., & Coskun, A. (2008). The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash. Construction and Building Materials, 22(11), 2269–2275. doi:10.1016/j.conbuildmat.2007.07.033.

Sancak, E., Dursun Sari, Y., & Simsek, O. (2008). Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer. Cement and Concrete Composites, 30(8), 715–721. doi:10.1016/j.cemconcomp.2008.01.004.

Yang, H., Zhao, H., & Liu, F. (2018). Residual cube strength of coarse RCA concrete after exposure to elevated temperatures. Fire and Materials, 42(4), 424–435. doi:10.1002/fam.2508.

Chan, S. Y. N., Luo, X., & Sun, W. (2000). Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete. Construction and Building Materials, 14(5), 261–266. doi:10.1016/S0950-0618(00)00031-3.

Peng, G. F., Bian, S. H., Guo, Z. Q., Zhao, J., Peng, X. L., & Jiang, Y. C. (2008). Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures. Construction and Building Materials, 22(5), 948–955. doi:10.1016/j.conbuildmat.2006.12.002.

Bingöl, A. F., & Gül, R. (2009). Effect of elevated temperatures and cooling regimes on normal strength concrete. Fire and Materials, 33(2), 79–88. doi:10.1002/fam.987.

Botte, W., & Caspeele, R. (2017). Post-cooling properties of concrete exposed to fire. Fire Safety Journal, 92, 142–150. doi:10.1016/j.firesaf.2017.06.010.

Reza Kashyzadeh, K., Ghorbani, S., & Forouzanmehr, M. (2020). Effects of Drying Temperature and Aggregate Shape on the Concrete Compressive Strength: Experiments and Data Mining Techniques. International Journal of Engineering, 33(9), 1780-1791. doi:10.5829/ije.2020.33.09c.12.

Moosaei, H. R., Zareei, A. R., & Salemi, N. (2022). Elevated Temperature Performance of Concrete Reinforced with Steel, Glass, and Polypropylene Fibers and Fire-proofed with Coating. International Journal of Engineering, 35(5), 917–930. https://doi.org/10.5829/ije.2022.35.05b.08.

Krivenko, P. V., Guzii, S. G., Bodnarova, L., Valek, J., Hela, R., & Zach, J. (2016). Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete. Journal of Building Engineering, 8, 14–19. doi:10.1016/j.jobe.2016.09.003.

Hassan, A., Aldhafairi, F., Abd-EL-Hafez, L. M., & Abouelezz, A. E. Y. (2019). Retrofitting of different types of reinforced concrete beams after exposed to elevated temperature. Engineering Structures, 194, 420–430. doi:10.1016/j.engstruct.2019.05.084.

Aldhafairi, F., Hassan, A., Abd-EL-Hafez, L. M., & Abouelezz, A. E. Y. (2020). Different techniques of steel jacketing for retrofitting of different types of concrete beams after elevated temperature exposure. Structures, 28, 713–725. doi:10.1016/j.istruc.2020.09.017.

Thongchom, C., Bui, L. V. H., Poonpan, N., Phudtisarigorn, N., Nguyen, P. T., Keawsawasvong, S., & Mousa, S. (2023). Experimental and Numerical Investigation of Steel- and GFRP-Reinforced Concrete Beams Subject to Fire Exposure. Buildings, 13(3), 1–19. doi:10.3390/buildings13030609.

Bhatt, P. P., Kodur, V. K. R., Shakya, A. M., & Alkhrdaji, T. (2021). Performance of insulated FRP-strengthened concrete flexural members under fire conditions. Frontiers of Structural and Civil Engineering, 15(1), 177–193. doi:10.1007/s11709-021-0714-z.

Cao, V. Van, Vo, H. B., Dinh, L. H., & Doan, D. Van. (2022). Experimental behavior of fire-exposed reinforced concrete slabs without and with FRP retrofitting. Journal of Building Engineering, 51, 104315. doi:10.1016/j.jobe.2022.104315.

Tseng, T.-C., & Varma, A. H. (2022). Synthesis Study: Repair and Durability of Fire-Damaged Prestressed Concrete Bridge Girders, Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2022/15, West Lafayette, University of Purdue, West Lafayette, United States. doi:10.5703/1288284317378.

IS-456. (2000). Plain and Reinforced Concrete - Code of Practice. Bureau of Indian Standards. New Delhi, India.

IS-10262. (2019). Concrete Mix Proportioning - Guidelines. Bureau of Indian Standards. New Delhi, India.

IS-12269. (2013). Ordinary Portland Cement Grade 53 – Specification. Bureau of Indian Standards. New Delhi, India.

IS-383. (2021). Coarse and Fine Aggregate for Concrete – Specifications (3rd Revision). Bureau of Indian Standards. New Delhi, India.

IS-516. (2021). Part 1: Sec 1: Hardened Concrete - Methods of Test - Part 1 Testing of Strength of Hardened Concrete -Section 1 Compressive, Flexural and Split Tensile Strength. Bureau of Indian Standards. New Delhi, India.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-07-013

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Swapnil Bapu Kharmale, Pramod S Sathe, Yashwant A Kolekar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message