Effect of Cooling Conditions, Retrofitting on Strength of Concrete Subjected to Elevated Temperature
Downloads
Doi: 10.28991/CEJ-2023-09-07-013
Full Text: PDF
[2] EN 13501-1. (2018). Fire classification of construction products and building elements. Part 1: Classification using data from reaction to fire tests. European Committee for Standardization (CEN), Brussels, Belgium.
[3] ACI 216.1-14. (2014). Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies.” American Concrete Institute. Michigan, United States.
[4] Ma, Q., Guo, R., Zhao, Z., Lin, Z., & He, K. (2015). Mechanical properties of concrete at high temperature-A review. Construction and Building Materials, 93, 371–383. doi:10.1016/j.conbuildmat.2015.05.131.
[5] Arioz, O. (2007). Effects of elevated temperatures on properties of concrete. Fire Safety Journal, 42(8), 516–522. doi:10.1016/j.firesaf.2007.01.003.
[6] Chen, B., Li, C., & Chen, L. (2009). Experimental study of mechanical properties of normal-strength concrete exposed to high temperatures at an early age. Fire Safety Journal, 44(7), 997–1002. doi:10.1016/j.firesaf.2009.06.007.
[7] Hager, I. (2013). Behaviour of cement concrete at high temperature. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(1), 145–154. doi:10.2478/bpasts-2013-0013.
[8] Kodur, V. (2014). Properties of concrete at elevated temperatures. ISRN Civil Engineering, 1–15. doi:10.1155/2014/468510.
[9] Krishna, D. A., Priyadarsini, R. S., & Narayanan, S. (2019). Effect of Elevated Temperatures on the Mechanical Properties of Concrete. Procedia Structural Integrity, 14, 384–394. doi:10.1016/j.prostr.2019.05.047.
[10] Endait, M., & Wagh, S. (2020). Effect of elevated temperature on mechanical properties of early-age concrete. Innovative Infrastructure Solutions, 5(1), 4. doi:10.1007/s41062-019-0254-8.
[11] Sideris, K. K. (2007). Mechanical Characteristics of Self-Consolidating Concretes Exposed to Elevated Temperatures. Journal of Materials in Civil Engineering, 19(8), 648–654. doi:10.1061/(asce)0899-1561(2007)19:8(648).
[12] Behnood, A., & Ghandehari, M. (2009). Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Safety Journal, 44(8), 1015–1022. doi:10.1016/j.firesaf.2009.07.001.
[13] Varghese, A., Anand, N., & Arulraj, P. G. (2020). Influence of Fiber on Shear Behavior of Concrete Exposed to Elevated Temperature. International Journal of Engineering, 33(10). doi:10.5829/ije.2020.33.10a.08.
[14] Kodur, V., & Khaliq, W. (2011). Effect of Temperature on Thermal Properties of Different Types of High-Strength Concrete. Journal of Materials in Civil Engineering, 23(6), 793–801. doi:10.1061/(asce)mt.1943-5533.0000225.
[15] Sengul, O. (2018). Mechanical properties of slurry infiltrated fiber concrete produced with waste steel fibers. Construction and Building Materials, 186, 1082-1091. doi:10.1016/j.conbuildmat.2018.08.042.
[16] Al-Radi, H. H. Y., Dejian, S., & Sultan, H. K. (2021). Performance of fiber self-compacting concrete at high temperatures. Civil Engineering Journal, 7(12), 2083–2098. doi:10.28991/cej-2021-03091779.
[17] Khan, M. S., Prasad, J., & Abbas, H. (2013). Effect of High Temperature on High-Volume Fly Ash Concrete. Arabian Journal for Science and Engineering, 38(6), 1369–1378. doi:10.1007/s13369-013-0606-1.
[18] Tanyildizi, H., & Coskun, A. (2008). The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash. Construction and Building Materials, 22(11), 2269–2275. doi:10.1016/j.conbuildmat.2007.07.033.
[19] Sancak, E., Dursun Sari, Y., & Simsek, O. (2008). Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer. Cement and Concrete Composites, 30(8), 715–721. doi:10.1016/j.cemconcomp.2008.01.004.
[20] Yang, H., Zhao, H., & Liu, F. (2018). Residual cube strength of coarse RCA concrete after exposure to elevated temperatures. Fire and Materials, 42(4), 424–435. doi:10.1002/fam.2508.
[21] Chan, S. Y. N., Luo, X., & Sun, W. (2000). Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete. Construction and Building Materials, 14(5), 261–266. doi:10.1016/S0950-0618(00)00031-3.
[22] Peng, G. F., Bian, S. H., Guo, Z. Q., Zhao, J., Peng, X. L., & Jiang, Y. C. (2008). Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures. Construction and Building Materials, 22(5), 948–955. doi:10.1016/j.conbuildmat.2006.12.002.
[23] Bingöl, A. F., & Gül, R. (2009). Effect of elevated temperatures and cooling regimes on normal strength concrete. Fire and Materials, 33(2), 79–88. doi:10.1002/fam.987.
[24] Botte, W., & Caspeele, R. (2017). Post-cooling properties of concrete exposed to fire. Fire Safety Journal, 92, 142–150. doi:10.1016/j.firesaf.2017.06.010.
[25] Reza Kashyzadeh, K., Ghorbani, S., & Forouzanmehr, M. (2020). Effects of Drying Temperature and Aggregate Shape on the Concrete Compressive Strength: Experiments and Data Mining Techniques. International Journal of Engineering, 33(9), 1780-1791. doi:10.5829/ije.2020.33.09c.12.
[26] Moosaei, H. R., Zareei, A. R., & Salemi, N. (2022). Elevated Temperature Performance of Concrete Reinforced with Steel, Glass, and Polypropylene Fibers and Fire-proofed with Coating. International Journal of Engineering, 35(5), 917–930. https://doi.org/10.5829/ije.2022.35.05b.08.
[27] Krivenko, P. V., Guzii, S. G., Bodnarova, L., Valek, J., Hela, R., & Zach, J. (2016). Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete. Journal of Building Engineering, 8, 14–19. doi:10.1016/j.jobe.2016.09.003.
[28] Hassan, A., Aldhafairi, F., Abd-EL-Hafez, L. M., & Abouelezz, A. E. Y. (2019). Retrofitting of different types of reinforced concrete beams after exposed to elevated temperature. Engineering Structures, 194, 420–430. doi:10.1016/j.engstruct.2019.05.084.
[29] Aldhafairi, F., Hassan, A., Abd-EL-Hafez, L. M., & Abouelezz, A. E. Y. (2020). Different techniques of steel jacketing for retrofitting of different types of concrete beams after elevated temperature exposure. Structures, 28, 713–725. doi:10.1016/j.istruc.2020.09.017.
[30] Thongchom, C., Bui, L. V. H., Poonpan, N., Phudtisarigorn, N., Nguyen, P. T., Keawsawasvong, S., & Mousa, S. (2023). Experimental and Numerical Investigation of Steel- and GFRP-Reinforced Concrete Beams Subject to Fire Exposure. Buildings, 13(3), 1–19. doi:10.3390/buildings13030609.
[31] Bhatt, P. P., Kodur, V. K. R., Shakya, A. M., & Alkhrdaji, T. (2021). Performance of insulated FRP-strengthened concrete flexural members under fire conditions. Frontiers of Structural and Civil Engineering, 15(1), 177–193. doi:10.1007/s11709-021-0714-z.
[32] Cao, V. Van, Vo, H. B., Dinh, L. H., & Doan, D. Van. (2022). Experimental behavior of fire-exposed reinforced concrete slabs without and with FRP retrofitting. Journal of Building Engineering, 51, 104315. doi:10.1016/j.jobe.2022.104315.
[33] Tseng, T.-C., & Varma, A. H. (2022). Synthesis Study: Repair and Durability of Fire-Damaged Prestressed Concrete Bridge Girders, Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2022/15, West Lafayette, University of Purdue, West Lafayette, United States. doi:10.5703/1288284317378.
[34] IS-456. (2000). Plain and Reinforced Concrete - Code of Practice. Bureau of Indian Standards. New Delhi, India.
[35] IS-10262. (2019). Concrete Mix Proportioning - Guidelines. Bureau of Indian Standards. New Delhi, India.
[36] IS-12269. (2013). Ordinary Portland Cement Grade 53 – Specification. Bureau of Indian Standards. New Delhi, India.
[37] IS-383. (2021). Coarse and Fine Aggregate for Concrete – Specifications (3rd Revision). Bureau of Indian Standards. New Delhi, India.
[38] IS-516. (2021). Part 1: Sec 1: Hardened Concrete - Methods of Test - Part 1 Testing of Strength of Hardened Concrete -Section 1 Compressive, Flexural and Split Tensile Strength. Bureau of Indian Standards. New Delhi, India.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.