Subsurface Analysis Using Microtremor and Resistivity to Determine Soil Vulnerability and Discovery of New Local Fault

Adi Susilo, Alamsyah M. Juwono, Faridha Aprilia, Farizky Hisyam, Siti Rohmah, Muhammad Fathur Rouf Hasan


Microtremor and geoelectrical resistivity surveys have been conducted in areas where the April 10, 2021, earthquake of 6.1 Mw caused the most damage. Wirotaman Village, Malang Regency, was one of the regions with the most extensive damage. This study aims to investigate the seismic vulnerability and subsurface conditions that result in severe damage at the research location. This study's Horizontal to Vertical Spectral Ratio Analysis (HVSR) curve was derived from the recorded microtremor signal in the frequency domain. The frequency parameter and amplification factor obtained from the curve are used to determine the seismic vulnerability index. In addition, a geoelectrical resistivity study with a dipole-dipole configuration was conducted at the site with the most extensive damage. The results of this study show the correlation between the results of the HVSR curve analysis and geoelectrical resistivity in determining the seismic vulnerability of an area. The results indicated that the high seismic vulnerability index value ranged from Kg= 12.0 to 18.0, with the most severe damage concentrated in the Southwest at SA 05 and SA 06. Based on the results of the geoelectrical survey, information was obtained that several points of damage to buildings at SA 05 (red circle) were on the same line, where this condition was associated with the possibility of new faults at that location. This microtremor and geoelectric resistivity investigation reveals thick sedimentary deposits with a high seismic vulnerability index and low resistivity. This study's findings can be utilized as a guide for micro zonation studies in research areas. This research contributes to the surrounding community in the form of disaster mitigation, where construction must avoid local fault positions that have been found to reduce the level of damage when natural geological disasters occur.


Doi: 10.28991/CEJ-2023-09-09-014

Full Text: PDF


Microtremor; Seismic Vulnerability; Geoelectrical Resistivity; Earthquake Disasters; Soil.


BPBD Malang Regency. (2022). Data on Disaster Events in Malang Regency. Regional Disaster Management Agency of Malang District, Malang Regency Government, Malang, Indonesia.

BMKG. (2021). Recent Earthquakes (M ≥ 5.0). Government of Indonesia: Meteorology, Climatology, and Geophysical Agency. Badan Meteorologi, Klimatologi, dan Geofisika, Jakarta, Indonesia. Available online: (accessed on April 2023). (In Indonesian)

Kanai, K. (1983). Engineering seismology. University of Tokyo Press, Tokyo, Japan.

Nakamura, Y. (1989). Method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), 30(1), 25–33.

Akkaya, İ. (2020). Availability of seismic vulnerability index (K g) in the assessment of building damage in Van, Eastern Turkey. Earthquake Engineering and Engineering Vibration, 19(1), 189–204. doi:10.1007/s11803-020-0556-z.

Lermo, J., & Chávez-García, F. J. (1994). Site effect evaluation at Mexico City: Dominant period and relative amplification from strong motion and microtremor records. Soil Dynamics and Earthquake Engineering, 13(6), 413–423. doi:10.1016/0267-7261(94)90012-4.

Mahajan, A. K., Mundepi, A. K., Chauhan, N., Jasrotia, A. S., Rai, N., & Gachhayat, T. K. (2012). Active seismic and passive microtremor HVSR for assessing site effects in Jammu city, NW Himalaya, India-A case study. Journal of Applied Geophysics, 77, 51–62. doi:10.1016/j.jappgeo.2011.11.005.

Putti, S. P., & Satyam, N. (2020). Evaluation of Site Effects Using HVSR Microtremor Measurements in Vishakhapatnam (India). Earth Systems and Environment, 4(2), 439–454. doi:10.1007/s41748-020-00158-6.

Haerudin, N., Rustadi, Alami, F., & Yogi, I. B. S. (2020). The effect site analysis based on microtremor data using the Horizontal to Vertical Spectral Ratio (HVSR) method in the Bandar Lampung City. Journal of Physics: Conference Series, 1572(1), 012075. doi:10.1088/1742-6596/1572/1/012075.

Widia Pamungkas Isburhan, R., Nuraeni, G., Verdhora Ry, R., Yudistira, T., Cipta, A., & Cummins, P. (2019). Horizontal-to-Vertical Spectral Ratio (HVSR) Method for Earthquake Risk Determination of Jakarta City with Microtremor Data. IOP Conference Series: Earth and Environmental Science, 318(1), 12033. doi:10.1088/1755-1315/318/1/012033.

Stanko, D., Markušić, S., Gazdek, M., Sanković, V., Slukan, I., & Ivančić, I. (2019). Assessment of the seismic site amplification in the city of ivanec (NW part of Croatia) using the microtremor HVSR method and equivalent-linear site response analysis. Geosciences (Switzerland), 9(7), 312. doi:10.3390/geosciences9070312.

Fat-Helbary, R. E. S., El-Faragawy, K. O., & Hamed, A. (2019). Application of HVSR technique in the site effects estimation at the south of Marsa Alam city, Egypt. Journal of African Earth Sciences, 154, 89–100. doi:10.1016/j.jafrearsci.2019.03.015.

Yaghmaei-Sabegh, S., & Rupakhety, R. (2020). A new method of seismic site classification using HVSR curves: A case study of the 12 November 2017 Mw 7.3 Ezgeleh earthquake in Iran. Engineering Geology, 270, 105574. doi:10.1016/j.enggeo.2020.105574.

Theodoulidis, N., Dushi, E., Duni, L., Grendas, I., Panou, A., Hajrullai, A., Kuka, N., & Koci, R. (2022). Local Site Effects Investigation in Durres City (Albania) Using Ambient Noise, after the 26 November 2019 (M6.4) Destructive Earthquake. Applied Sciences (Switzerland), 12(22), 11309. doi:10.3390/app122211309.

Li, J., Zhou, B., Rong, M., Chen, S., & Zhou, Y. (2020). Estimation of source spectra, attenuation, and site responses from strong-motion data recorded in the 2019 Changning earthquake sequence. Bulletin of the Seismological Society of America, 110(2), 410–426. doi:10.1785/0120190207.

Cetin, K. O., Altun, S., Askan, A., Akgün, M., Sezer, A., Kıncal, C., Özdağ, Ö. C., İpek, Y., Unutmaz, B., Gülerce, Z., Özacar, A. A., Ilgaç, M., Can, G., Cakir, E., Söylemez, B., El-Sayeed, A., Zarzour, M., Bozyiğit, İ., Tuna, Ç., … Karaali, E. (2022). The site effects in Izmir Bay of October 30 2020, M7.0 Samos Earthquake. Soil Dynamics and Earthquake Engineering, 152, 107051. doi:10.1016/j.soildyn.2021.107051.

Reynolds, J. M. (2011). An introduction to applied and environmental geophysics. John Wiley & Sons, Hoboken, United States.

Robot, L. C., Manyoe, I. N., Arifin, Y. I., Saputra, M. J. A., Bilgais, A. A., Abdullah, R. A., & Napu, S. S. S. (2021). Surface and subsurface analysis based on the geological structure and electrical resistivity Data in Gorontalo Outer Ring Road (GORR), Huidu Utara. Journal of Physics: Conference Series, 1968(1), 12054. doi:10.1088/1742-6596/1968/1/012054.

Susilo, A., Fitriah, F., Sunaryo, Ayu Rachmawati, E. T., & Suryo, E. A. (2020). Analysis of landslide area of Tulung subdistrict, Ponorogo, Indonesia in 2017 using resistivity method. Smart and Sustainable Built Environment, 9(4), 341–360. doi:10.1108/SASBE-06-2019-0082.

Hossain, M. B., Roknuzzaman, M., & Rahman, M. M. (2022). Liquefaction Potential Evaluation by Deterministic and Probabilistic Approaches. Civil Engineering Journal, 8(7), 1459-1481. doi:10.28991/CEJ-2022-08-07-010.

Hasan, M. F. R., Salimah, A., Susilo, A., Rahmat, A., Nurtanto, M., & Martina, N. (2022). Identification of Landslide Area Using Geoelectrical Resistivity Method as Disaster Mitigation Strategy. International Journal on Advanced Science, Engineering and Information Technology, 12(4), 1484–1490. doi:10.18517/ijaseit.12.4.14694.

Chasanah, U., Handoyo, E., Rahmawati, N. N., & Musfiana, M. (2022). Mapping Risk Level Based on Peak Ground Acceleration (PGA) and Earthquake Intensity Using Multievent Earthquake Data in Malang Regency, East Java, Indonesia. Journal of Physical Science, 14(1), 64–72. doi:10.25077/jif.14.1.64-72.2022.

Muntafi, Y., & Nojima, N. (2021). The Spatio-temporal Tectonic Condition and Microzonation Map of Malang Region after the 2021 M6.1 Malang Earthquake for Disaster Risk Mitigation. IOP Conference Series: Earth and Environmental Science, 933(1), 12031. doi:10.1088/1755-1315/933/1/012031.

Tawakal, M. I., Haris, A., & Martha, A. A. (2020). Estimating shear wave velocity (Vs30) of East Java, Indonesia, using ambient noise inversion of horizontal to vertical spectral ratio (HVSR). IOP Conference Series: Earth and Environmental Science, 538(1), 12012. doi:10.1088/1755-1315/538/1/012012.

Keskinsezer, A., & Dağ, E. (2019). Investigating of soil features and landslide risk in Western-Atakent (İstanbul) using resistivity, MASW, Microtremor and boreholes methods. Open Geosciences, 11(1), 1112–1128. doi:10.1515/geo-2019-0086.

Khalili, M., & Mirzakurdeh, A. V. (2019). Fault detection using microtremor data (HVSR-based approach) and electrical resistivity survey. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 400–408. doi:10.1016/j.jrmge.2018.12.003.

Demirci, A., Kaya, M. A., Bekler, T., & Ekinci, Y. L. (2007). Microtremor and Resistivity Studies for Evaluating Ground Conditions in Canakkale. Near Surface 2007 - 13th EAGE European Meeting of Environmental and Engineering Geophysics. doi:10.3997/2214-4609.20146621.

Zhu, C., Pilz, M., & Cotton, F. (2020). Evaluation of a novel application of earthquake HVSR in site-specific amplification estimation. Soil Dynamics and Earthquake Engineering, 139, 106301. doi:10.1016/j.soildyn.2020.106301.

Talha Qadri, S. M., Nawaz, B., Sajjad, S. H., & Sheikh, R. A. (2015). Ambient noise H/V spectral ratio in site effects estimation in Fateh Jang area, Pakistan. Earthquake Science, 28(1), 87–95. doi:10.1007/s11589-014-0105-9.

Bour, M., Fouissac, D., Dominique, P., & Martin, C. (1998). On the use of microtremor recordings in seismic microzonation. Soil Dynamics and Earthquake Engineering, 17(7–8), 465–474. doi:10.1016/S0267-7261(98)00014-1.

Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics. Cambridge University Press, 792. doi:10.1017/CBO9781139167932.

van Bemmelen, R.W. (1949). General Geology of Indonesia and Adjacent Archipelagoes. Government Printing Office, The Hague, Netherlands.

Sujanto, R., Hadisantono, R., Chaniago, R., & Baharuddin, R. (1992). Geological Map of The Turen Quadrangle, Jawa. Geological Research and Development Centre, Bandung, Indonesia.

Khan, S., Waseem, M., & Jan, S. (2021). Site response studies in Peshawar using the Nakamura technique of HVSR. Arabian Journal of Geosciences, 14(3). doi:10.1007/s12517-021-06527-3.

Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3–4), 221–232. doi:10.1016/j.epsl.2008.07.020.

Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India, Noida, India.

Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura’s technique and its applications. Proceedings of the 12th world conference on earthquake engineering, 30 January-4 February, Auckland, New Zealand.

Khalqillah, A., Muksin, U., Musfirah, Ningsih, W. A., & Irwandi. (2019). SVIM: A Program for Seismic Vulnerability Index Determination and HVSR Data Processing. IOP Conference Series: Earth and Environmental Science, 273(1), 012016. doi:10.1088/1755-1315/273/1/012016.

Prabowo, U. N., Amalia, A. F., & Wiranata, F. E. (2018). Local site effect of soil slope based on microtremor measurement in Samigaluh, Kulon Progo Yogyakarta. Journal of Physics: Conference Series, 997(1), 12007. doi:10.1088/1742-6596/997/1/012007.

Rochman, J. P. G. N., Sadewa, M. A., & Putra, A. M. (2023). Earthquake Microzonation Using Microtremor Analysis and Horizontal to Vertical Spectral Ratio Method Study Case at Ampelgading and Tirtoyudo Sub-district, Malang, East Java. Advances in Engineering Research, 127–136. doi:10.2991/978-94-6463-148-7_14.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-09-014


  • There are currently no refbacks.

Copyright (c) 2023 Adi Susilo, Alamsyah Mohammad Juwono, Faridha Aprilia, Farizky Hisyam, Siti Rohmah, Muhammad Fathur Rouf Hasan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.