Recycling of Basalt and Limestone Cutting Dust in Concrete Mix Design
Abstract
Doi: 10.28991/CEJ-2023-09-05-010
Full Text: PDF
Keywords
References
Gallagher, L., & Peduzzi, P. (2019). Sand and sustainability: Finding new solutions for environmental governance of global sand resources. United Nations Environment Programme, Geneva, Switzerland.
Mahzuz, H. M. A., Ahmed, A. A. M., & Yusuf, M. A. (2011). Use of stone powder in concrete and mortar as an alternative of sand. African Journal of Environmental Science and Technology, 5(5), 381-388.
Yu, Z., Wu, L., Zhang, C., & Bangi, T. (2022). Influence of eco-friendly fine aggregate on macroscopic properties, microstructure and durability of ultra-high performance concrete: A Review. Journal of Building Engineering, 65, 105783. doi:10.1016/j.jobe.2022.105783.
Williams, K., Balamuralikrishnan, R., Joe, A., & Prince, S. (2022). A Study on the Mechanical Properties of Green Concrete. Civil Engineering Journal, 8(5), 1011-1028. doi:10.28991/CEJ-2022-08-05-012.
Chen, X., Chen, H., Chen, Q., Lawi, A. S., & Chen, J. (2022). Effect of partial substitution of cement with Dolomite powder on Glass-Fiber-Reinforced mortar. Construction and Building Materials, 344, 128201. doi:10.1016/j.conbuildmat.2022.128201.
Vardhan, K., Siddique, R., & Goyal, S. (2019). Strength, permeation and micro-structural characteristics of concrete incorporating waste marble. Construction and Building Materials, 203, 45–55. doi:10.1016/j.conbuildmat.2019.01.079.
Venkatesan, B., Kannan, V., & Sophia, M. (2022). Utilization of granite powder and glass powder in reactive powder concrete: assessment of strength and long-term durability properties. Canadian Journal of Civil Engineering, 49(6), 885-898. doi:10.1139/cjce-2021-0258.
Kala, T. F. (2013). Effect of granite powder on strength properties of concrete. International Journal of Engineering and Science, 2(12), 36-50.
Li, H., Huang, F., Cheng, G., Xie, Y., Tan, Y., Li, L., & Yi, Z. (2016). Effect of granite dust on mechanical and some durability properties of manufactured sand concrete. Construction and Building Materials, 109, 41–46. doi:10.1016/j.conbuildmat.2016.01.034.
Jain, A., Gupta, R., & Chaudhary, S. (2019). Performance of self-compacting concrete comprising granite cutting waste as fine aggregate. Construction and Building Materials, 221, 539–552. doi:10.1016/j.conbuildmat.2019.06.104.
Shon, C. S., Tugelbayev, A., Shaimakhanov, R., Karatay, N., Zhang, D., & Kim, J. R. (2022). Use of off-ASTM class f fly ash and waste limestone powder in mortar mixtures containing waste glass sand. Sustainability (Switzerland), 14(1), 75. doi:10.3390/su14010075.
Shaqadan, A. (2020). Prediction of Concrete Strength Using Support Vector Machines Algorithm. Materials Science Forum, 986, 9–17. doi:10.4028/www.scientific.net/msf.986.9.
Dobiszewska, M., Bagcal, O., Beycioğlu, A., Goulias, D., Köksal, F., Niedostatkiewicz, M., & Ürünveren, H. (2022). Influence of Rock Dust Additives as Fine Aggregate Replacement on Properties of Cement Composites—A Review. Materials, 15(8), 2947. doi:10.3390/ma15082947.
UNEP. (2021). 2021 Global Status Report for Buildings and Construction: Towards a Zero emission, Efficient and Resilient Buildings and Construction Sector. Global Alliance for Buildings and Construction, United Nations Environment Programme (UNEP), Nairobi, Kenya.
Shaqadan, A. A., & Al-Rawashdeh, M. (2018). Prediction of concrete mix compressive strength using statistical learning models. Journal of Engineering Science and Technology, 13(7), 1916–1925.
Aliabdo, A. A., Abd Elmoaty, A. E. M., & Auda, E. M. (2014). Re-use of waste marble dust in the production of cement and concrete. Construction and Building Materials, 50, 28–41. doi:10.1016/j.conbuildmat.2013.09.005.
Medina, G., Sáez del Bosque, I. F., Frías, M., Sánchez de Rojas, M. I., & Medina, C. (2018). Durability of new recycled granite quarry dust-bearing cements. Construction and Building Materials, 187, 414–425. doi:10.1016/j.conbuildmat.2018.07.134.
Uchikawa, H., Hanehara, S., & Hirao, H. (1996). Influence of microstucture on the physical properties of concentrate prepared by substituting mineral powder for part of fine aggregate. Cement and Concrete Research, 26(1), 101–111. doi:10.1016/0008-8846(95)00193-X.
Ergün, A. (2011). Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Construction and Building Materials, 25(2), 806–812. doi:10.1016/j.conbuildmat.2010.07.002.
Atiyeh, M., & Aydin, E. (2020). Data for bottom ash and marble powder utilization as an alternative binder for sustainable concrete construction. Data in Brief, 29, 105160. doi:10.1016/j.dib.2020.105160.
Bayesteh, H., Sharifi, M., & Haghshenas, A. (2020). Effect of stone powder on the rheological and mechanical performance of cement-stabilized marine clay/sand. Construction and Building Materials, 262, 120792. doi:10.1016/j.conbuildmat.2020.120792.
Gunjal, S.M., & Kondraivendhan, B. (2022). Usage of Waste Marble Powder for the Manufacture of Limestone Calcinated Clay Cement (LCCC). Sustainable Building Materials and Construction. Lecture Notes in Civil Engineering, 222, Springer, Singapore. doi:10.1007/978-981-16-8496-8_44.
Shetty, M. S., & Jain, A. K. (2019). Concrete Technology (Theory and Practice) (8th Ed.). Chand Publishing, New Delhi, India.
Khan, M. I., Usman, M., Rizwan, S. A., & Hanif, A. (2019). Self-consolidating lightweight concrete incorporating limestone powder and fly ash as supplementary cementing material. Materials, 12(18), 3050. doi:10.3390/ma12183050.
Anitha Selvasofia, S. D., Dinesh, A., & Sarath Babu, V. (2020). Investigation of waste marble powder in the development of sustainable concrete. Materials Today: Proceedings, 44, 4223–4226. doi:10.1016/j.matpr.2020.10.536.
Mass, G. R. (1993). Guide for Selecting Proportions for High=Strength Concrete 2ith Portland Cement and Fly Ash. ACI Materials Journal, 90(3). doi:10.14359/9754.
Yang, Y., Zhang, Q., Shu, X., Wang, X., & Ran, Q. (2022). Influence of Sulfates on Formation of Ettringite during Early C3A Hydration. Materials, 15(19), 6934. doi:10.3390/ma15196934.
ASTM C192/C192M. (2016). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. American Society for Testing and Materials, 318(14), 1–8.
Feng, Y., Zhang, B., Xie, J., Xue, Z., Huang, K., & Tan, J. (2023). Effects of recycled sand and nanomaterials on ultra-high-performance concrete: Workability, compressive strength and microstructure. Construction and Building Materials, 378, 131180. doi:10.1016/j.conbuildmat.2023.131180.
ACI 318. (2019). 318-19 Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Michigan, United States. doi:10.14359/51716937.
Neville, A. M. (2011). Properties of Concrete (5th Ed.). Pearson Education, Upper Saddle River, United States.
Dobiszewska, M., & Beycioğlu, A. (2020). Physical properties and microstructure of concrete with waste basalt powder addition. Materials, 13(16), 3503. doi:10.3390/MA13163503.
Dobiszewska, M. (2016). Use of basalt powder in a cementitious mortar and concrete as a substitute of sand. Budownictwo I Architektura, 15(4), 075–085. doi:10.24358/bud-arch_16_154_08.
Zhou, H., Jia, B., Huang, H., & Mou, Y. (2020). Experimental study on basic mechanical properties of basalt fiber reinforced concrete. Materials, 13(6), 1362. doi:10.1201/9781003251125-87.
Knop, Y., Peled, A., & Cohen, R. (2014). Influences of limestone particle size distributions and contents on blended cement properties. Construction and Building Materials, 71, 26–34. doi:10.1016/j.conbuildmat.2014.08.004.
Aruntaş, H. Y., Gürü, M., Dayi, M., & Tekin, I. (2010). Utilization of waste marble dust as an additive in cement production. Materials and Design, 31(8), 4039–4042. doi:10.1016/j.matdes.2010.03.036.
DOI: 10.28991/CEJ-2023-09-05-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Mohammad Thalji Awad, ashraf shaqadan, Jamal AlAdwan, Faroq Maraqa
This work is licensed under a Creative Commons Attribution 4.0 International License.