Adsorption of Heavy Metals from Contaminated Water using Leachate Modular Tower

Frank Aneke, Joy Adu

Abstract


The heavy metals (HMs) and metalloids such as Cr(VI), As(Ill), and Pb(II) in contaminated water are toxic even at trace levels and have caused devastating negative health impacts on human beings. Hence, the effective adsorption of these heavy metals from contaminated water is important to protect biodiversity, hydrosphere ecosystems, and human beings. In this study, a leachate modular tower (LMT) was developed for the singular purpose of adsorbing HMs. The LMT contained nano-slag as a liner, which was synthesized from slag. The nano-slag was blended in different proportions of 90:10; 80:20, 70:30, 60:40, and 50:50 to the combined mass of clay and nano-slag, to evaluate the most efficient ratio of the blends capable of adsorbing HMs and metalloids with 100% efficiency. A series of leachate tests were performed to evaluate the adsorption capacity of LMT with different embedded liners. Attenuation periods of 2, 5, 7, and 10 days with a temperature of 500 °C were also selected to improve the sorption rate and uptake of HMs. Subsequently, the effluents were subjected to inductive coupled plasma mass spectrometry (ICP-MS) tests to evaluate the concentrations and percentages of adsorbed HMs, which were calculated using a pseudo-first-order adsorption model. The results revealed that the removal of 98%As, 99%Cd, and 99.9% Pb was achieved with a 50%:50% ratio of soil and nano-slag as the liner at 10 days equilibrium period. Furthermore, 98%Zn, 95.45%Cu, 93.3%Fe, 97%Ni, and 89% Hg were achieved upon further investigation using the same dosage of soil and nano-slag and equilibrium conditions. The scanning electron microscopy (SEM) tests demonstrated that some traces of the absorbed HMs and metalloids were found on the liner surfaces, indicating significant changes in microstructure. The results indicated the sorption rate increased significantly due to the elevated temperature, aluminosilicate structure, and prolonged attenuation period, which are also associated with an elevated pH level and higher cation exchange capacity (CEC), of the liner.

 

Doi: 10.28991/CEJ-2023-09-06-017

Full Text: PDF


Keywords


Contaminated Water; NSCL; Heavy Metals; LMT; Equilibrium Period.

References


Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9). doi:10.1016/j.heliyon.2020.e04691.

WHO. (2008). Guidelines for drinking-water quality: incorporating 1st and 2nd addenda (3rd Ed.). World Health Organization (WHO), Geneva, Switzerland. Available online: https://apps.who.int/iris/bitstream/handle/10665/204411/9789241547611_ eng.pdf?sequence=1&isAllowed=y (accessed on April 2023).

Bind, A., Kushwaha, A., Devi, G., Goswami, S., Sen, B., & Prakash, V. (2019). Biosorption valorization of floating and submerged macrophytes for heavy-metal removal in a multi-component system. Applied Water Science, 9(4), 95. doi:10.1007/s13201-019-0976-y.

Kumar, M., Goswami, L., Singh, A. K., & Sikandar, M. (2019). Valorization of coal fired-fly ash for potential heavy metal removal from the single and multi-contaminated system. Heliyon, 5(10). doi:10.1016/j.heliyon.2019.e02562.

Kumar, S., Islam, A. R. M. T., Hasanuzzaman, M., Salam, R., Khan, R., & Islam, M. S. (2021). Preliminary assessment of heavy metals in surface water and sediment in Nakuvadra-Rakiraki River, Fiji using indexical and chemometric approaches. Journal of Environmental Management, 298. doi:10.1016/j.jenvman.2021.113517.

Fu, Z. J., Jiang, S. K., Chao, X. Y., Zhang, C. X., Shi, Q., Wang, Z. Y., Liu, M. L., & Sun, S. P. (2022). Removing miscellaneous heavy metals by all-in-one ion exchange-nanofiltration membrane. Water Research, 222, 118888. doi:10.1016/j.watres.2022.118888.

Toropitsyna, J., Jelinek, L., Wilson, R., & Paidar, M. (2023). Selective Removal of Transient Metal Ions from Acid Mine Drainage and the Possibility of Metallic Copper Recovery with Electrolysis. Solvent Extraction and Ion Exchange, 41(2), 176–204. doi:10.1080/07366299.2023.2181090.

Sun, Y., Wang, Z., Chen, J., Fang, Y., Wang, L., Pan, W., Zou, B., Qian, G., & Xu, Y. (2022). Phosphorus Recovery from Incinerated Sewage Sludge Ash Using Electrodialysis Coupled with Plant Extractant Enhancement Technology. SSRN Electronic Journal. doi:10.2139/ssrn.4293133.

Khan, A. U., Khan, A. N., Waris, A., Ilyas, M., & Zamel, D. (2022). Phytoremediation of pollutants from wastewater: A concise review. Open Life Sciences, 17(1), 488–496. doi:10.1515/biol-2022-0056.

Li, Q., Liu, D., Chen, C., Shao, Z., Wang, H., Liu, J., Zhang, Q., & Gadd, G. M. (2019). Experimental and geochemical simulation of nickel carbonate mineral precipitation by carbonate-laden Ureolytic fungal culture supernatants. Environmental Science: Nano, 6(6), 1866–1875. doi:10.1039/c9en00385a.

Rajendran, S., Priya, A. K., Senthil Kumar, P., Hoang, T. K. A., Sekar, K., Chong, K. Y., Khoo, K. S., Ng, H. S., & Show, P. L. (2022). A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere, 303(N), 0045–6535,. doi:10.1016/j.chemosphere.2022.135146.

Lejwoda, P., Świnder, H., & Thomas, M. (2023). Evaluation of the stability of heavy metal-containing sediments obtained in the wastewater treatment processes with the use of various precipitating agents. Environmental Monitoring and Assessment, 195(4), 442. doi:10.1007/s10661-023-11036-9.

Li, Y., Yu, H., Liu, L., & Yu, H. (2021). Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates. Journal of Hazardous Materials, 420(126655). doi:10.1016/j.jhazmat.2021.126655.

Kushwaha, A., Rani, R., & Patra, J. K. (2020). Adsorption kinetics and molecular interactions of lead [Pb(II)] with natural clay and humic acid. International Journal of Environmental Science and Technology, 17(3), 1325–1336. doi:10.1007/s13762-019-02411-6.

Gupta, A., Sharma, V., Sharma, K., Kumar, V., Choudhary, S., Mankotia, P., Kumar, B., Mishra, H., Moulick, A., Ekielski, A., & Mishra, P. K. (2021). A review of adsorbents for heavy metal decontamination: Growing approach to wastewater treatment. Materials, 14(16). doi:10.3390/ma14164702.

Maleki, A., Mohammad, M., Emdadi, Z., Asim, N., Azizi, M., & Safaei, J. (2020). Adsorbent materials based on a geopolymer paste for dye removal from aqueous solutions. Arabian Journal of Chemistry, 13(1), 3017–3025. doi:10.1016/j.arabjc.2018.08.011.

Luhar, I., Luhar, S., Abdullah, M. M. A. B., Razak, R. A., Vizureanu, P., Sandu, A. V., & Matasaru, P. D. (2021). A state-of-the-art review on innovative geopolymer composites designed for water and wastewater treatment. Materials, 14(23), 7456. doi:10.3390/ma14237456.

Aigbe, U. O., & Osibote, O. A. (2020). A review of hexavalent chromium removal from aqueous solutions by sorption technique using nanomaterials. Journal of Environmental Chemical Engineering, 8(6), 104503. doi:10.1016/j.jece.2020.104503.

Bandar, S., Anbia, M., & Salehi, S. (2021). Comparison of MnO2 modified and unmodified magnetic Fe3O4 nanoparticle adsorbents and their potential to remove iron and manganese from aqueous media. Journal of Alloys and Compounds, 851. doi:10.1016/j.jallcom.2020.156822.

Nworie, F. S., Mgbemena, N., Ike-Amadi, A. C., & Ebunoha, J. (2022). Functionalized Biochars for Enhanced Removal of Heavy Metals from Aqueous Solutions: Mechanism and Future Industrial Prospects. Journal of Human, Earth, and Future, 3(3), 377-395. doi:10.28991/HEF-2022-03-03-09.

Xiao, G., Wang, Y., Xu, S., Li, P., Yang, C., Jin, Y., Sun, Q., & Su, H. (2019). Superior adsorption performance of graphitic carbon nitride nanosheets for both cationic and anionic heavy metals from wastewater. Chinese Journal of Chemical Engineering, 27(2), 305–313. doi:10.1016/j.cjche.2018.09.028.

Ibrahim, R. K., Hayyan, M., AlSaadi, M. A., Hayyan, A., & Ibrahim, S. (2016). Environmental application of nanotechnology: air, soil, and water. Environmental Science and Pollution Research, 23(14), 13754–13788. doi:10.1007/s11356-016-6457-z.

Mathur, J., Goswami, P., Gupta, A., Srivastava, S., Minkina, T., Shan, S., & D. Rajput, V. (2022). Nanomaterials for Water Remediation: An Efficient Strategy for Prevention of Metal (Loid) Hazard. Water (Switzerland), 14(24), 3998. doi:10.3390/w14243998.

Kumara, G. M. P., & Kawamoto, K. (2019). Applicability of crushed clay brick and municipal solid waste slag as low-cost adsorbents to refine high concentrate Cd (II) and Pb (II) contaminated wastewater. International Journal of Geomate, 17(63), 133–142. doi:10.21660/2019.63.26726.

Nguyen, T. C., Tran, T. D. M., Dao, V. B., Vu, Q. T., Nguyen, T. D., & Thai, H. (2020). Using Modified Fly Ash for Removal of Heavy Metal Ions from Aqueous Solution. Journal of Chemistry, 2020, 11. doi:10.1155/2020/8428473.

Praditia, T., Karlbauer, M., Otte, S., Oladyshkin, S., Butz, M. V., & Nowak, W. (2022). Learning Groundwater Contaminant Diffusion-Sorption Processes with a Finite Volume Neural Network. Water Resources Research, 58(12), 2022 033149. doi:10.1029/2022WR033149.

Ahmadi, M., Hazrati Niari, M., & Kakavandi, B. (2017). Development of maghemite nanoparticles supported on cross-linked chitosan (γ-Fe2O3@CS) as a recoverable mesoporous magnetic composite for effective heavy metals removal. Journal of Molecular Liquids, 248, 184–196. doi:10.1016/j.molliq.2017.10.014.

Akpomie, K. G., Conradie, J., Adegoke, K. A., Oyedotun, K. O., Ighalo, J. O., Amaku, J. F., Olisah, C., Adeola, A. O., & Iwuozor, K. O. (2023). Adsorption mechanism and modeling of radionuclides and heavy metals onto ZnO nanoparticles: a review. Applied Water Science, 13(1). doi:10.1007/s13201-022-01827-9.

ASTM D1140-17. (2017). Standard Test Methods for Determining the Amount of Material Finer than 75-μm (No. 200) Sieve in Soils by Washing, ASTM International, Pennsylvania, United States. doi:10.1520/D1140-17.

IS 2720-24. (1976). Methods of test for soils Part XXIV determination of cation exchange capacity. Bureau of Indian Standards, New Delhi, India.

South African Water Quality Guidelines. (1976). Volume 7: Aquatic Ecosystems. Department of Water Affairs and Forestry (DWARF), Mokopane, South Africa.

ASTM D6276-19. (2019). Standard Test Method for Using pH to Estimate the Soil-Lime Proportion Requirement for Soil Stabilization. ASTM International, Pennsylvania, United Sates. doi:10.1520/D6276-19.

Dubey, R., Bajpai, J., & Bajpai, A. K. (2016). Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Environmental Nanotechnology, Monitoring and Management, 6, 32–44. doi:10.1016/j.enmm.2016.06.008.

Chen, C., Liu, H., Chen, T., Chen, D., & Frost, R. L. (2015). An insight into the removal of Pb(II), Cu(II), Co(II), Cd(II), Zn(II), Ag(I), Hg(I), Cr(VI) by Na(I)-montmorillonite and Ca(II)-montmorillonite. Applied Clay Science, 118, 239–247. doi:10.1016/j.clay.2015.09.004.

Zacaroni, L. M., Magriotis, Z. M., Cardoso, M. das G., Santiago, W. D., Mendonça, J. G., Vieira, S. S., & Nelson, D. L. (2015). Natural clay and commercial activated charcoal: Properties and application for the removal of copper from cachaça. Food Control, 47, 536–544. doi:10.1016/j.foodcont.2014.07.035.

Campillo-Cora, C., Conde-Cid, M., Arias-Estévez, M., Fernández-Calviño, D., & Alonso-Vega, F. (2020). Specific adsorption of heavy metals in soils: Individual and competitive experiments. Agronomy, 10(8). doi:10.3390/agronomy10081113.

Ewis, D., Ba-Abbad, M. M., Benamor, A., & El-Naas, M. H. (2022). Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review. Applied Clay Science, 229. doi:10.1016/j.clay.2022.106686.

Kolluru, S. S., Agarwal, S., Sireesha, S., Sreedhar, I., & Kale, S. R. (2021). Heavy metal removal from wastewater using nanomaterials-process and engineering aspects. Process Safety and Environmental Protection, 150, 323–355. doi:10.1016/j.psep.2021.04.025.

Ghasemzadeh, G., Momenpour, M., Omidi, F., Hosseini, M. R., Ahani, M., & Barzegari, A. (2014). Applications of nanomaterials in water treatment and environmental remediation. Frontiers of Environmental Science and Engineering, 8(4), 471–482. doi:10.1007/s11783-014-0654-0.

Rajak, A. A. (2022). Emerging technological methods for effective farming by cloud computing and IoT. Emerg. Sci. J., 6(5), 1017-1031. doi:10.28991/ESJ-2022-06-05-07.

Zarime, N. A., Yaacob, W. Z. W., & Jamil, H. (2018). Removal of heavy metals using bentonite supported nano-zero valent iron particles. AIP Conference Proceedings. doi:10.1063/1.5027944.

Sadegh, H., Ali, G. A. M., Gupta, V. K., Makhlouf, A. S. H., Shahryari-ghoshekandi, R., Nadagouda, M. N., Sillanpää, M., & Megiel, E. (2017). The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry, 7(1), 1–14. doi:10.1007/s40097-017-0219-4.

Sepehri, S., Kanani, E., Abdoli, S., Rajput, V. D., Minkina, T., & Asgari Lajayer, B. (2023). Pb(II) Removal from Aqueous Solutions by Adsorption on Stabilized Zero-Valent Iron Nanoparticles—A Green Approach. Water (Switzerland), 15(2), 222. doi:10.3390/w15020222.

Alipour, A., Zarinabadi, S., Azimi, A., & Mirzaei, M. (2020). Adsorptive removal of Pb(II) ions from aqueous solutions by thiourea-functionalized magnetic ZnO/nanocellulose composite: Optimization by response surface methodology (RSM). International Journal of Biological Macromolecules, 151, 124–135. doi:10.1016/j.ijbiomac.2020.02.109.

Zhang, Y., Zhang, H., Zhang, Z., Liu, C., Sun, C., Zhang, W., & Marhaba, T. (2018). PH Effect on Heavy Metal Release from a Polluted Sediment. Journal of Chemistry, 2018, 7. doi:10.1155/2018/7597640.

Yu, G., Wang, X., Liu, J., Jiang, P., You, S., Ding, N., Guo, Q., & Lin, F. (2021). Applications of nanomaterials for heavy metal removal from water and soil: A review. Sustainability (Switzerland), 13(2), 1–14. doi:10.3390/su13020713.

Cruz-Lopes, L. P., Macena, M., Esteves, B., & Guiné, R. P. F. (2021). Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+in aqueous solution with different adsorbent materials. Open Agriculture, 6(1), 115–123. doi:10.1515/opag-2021-0225.

Huang, J., Yuan, F., Zeng, G., Li, X., Gu, Y., Shi, L., Liu, W., & Shi, Y. (2017). Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere, 173, 199–206. doi:10.1016/j.chemosphere.2016.12.137.

Zafar, M. N., Aslam, I., Nadeem, R., Munir, S., Rana, U. A., & Khan, S. U. D. (2015). Characterization of chemically modified biosorbents from rice bran for biosorption of Ni(II). Journal of the Taiwan Institute of Chemical Engineers, 46, 82–88. doi:10.1016/j.jtice.2014.08.034.

Zafar, M. N., Saeed, M., Nadeem, R., Sumrra, S. H., Shafqat, S. S., & Qayyum, M. A. (2019). Chemical pretreatments of Trapa bispinosa’s peel (TBP) biosorbent to enhance adsorption capacity for Pb(ll). Open Chemistry, 17(1), 325–336. doi:10.1515/chem-2019-0031.

Penha, R. S., Santos, C. C., Cardoso, J. J. F., Silva, H. A. S., Santana, S. A. A., & Bezerra, C. W. B. (2016). Chemically treated rice husk as low-cost adsorbent for metal ions uptake (Co2+ and Ni2+). Revista Virtual de Quimica, 8(3), 588–604. doi:10.5935/1984-6835.20160045.

Yadav, N., Singh, S., Saini, O., & Srivastava, S. (2022). Technological advancement in the remediation of heavy metals employing engineered nanoparticles: A step towards cleaner water process. Environmental Nanotechnology, Monitoring and Management, 18, 100757. doi:10.1016/j.enmm.2022.100757.

Tang, X., Zheng, H., Teng, H., Sun, Y., Guo, J., Xie, W., Yang, Q., & Chen, W. (2016). Chemical coagulation process for the removal of heavy metals from water: a review. Desalination and Water Treatment, 57(4), 1733–1748. doi:10.1080/19443994.2014.977959.

Kołodyńska, D., Krukowska-Bąk, J., Kazmierczak-Razna, J., & Pietrzak, R. (2017). Uptake of heavy metal ions from aqueous solutions by sorbents obtained from the spent ion exchange resins. Microporous and Mesoporous Materials, 244, 127–136. doi:10.1016/j.micromeso.2017.02.040.

Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., & Huang, X. (2019). Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials, 9(3), 424. doi:10.3390/nano9030424.

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. doi:10.2478/intox-2014-0009.

Xu, J., Cao, Z., Zhang, Y., Yuan, Z., Lou, Z., Xu, X., & Wang, X. (2018). A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere, 195, 351–364. doi:10.1016/j.chemosphere.2017.12.061.

Gopalakrishnan, A., Krishnan, R., Thangavel, S., Venugopal, G., & Kim, S. J. (2015). Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics. Journal of Industrial and Engineering Chemistry, 30, 14–19. doi:10.1016/j.jiec.2015.06.005.

Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials, 211–212, 317–331. doi:10.1016/j.jhazmat.2011.10.016.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-06-017

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Frank Aneke, Joy Adu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message