Soil Reinforcement Model Test Using Timber Pile at Liquefaction Area
Downloads
Doi: 10.28991/CEJ-2023-09-06-016
Full Text: PDF
Downloads
[2] Harianto, T., Yunus, M. and Walenna, M.A. (2021). Bearing Capacity of Raft-Pile Foundation Using Timber Pile on Soft Soil. International Journal of GEOMATE, 21(86). doi:10.21660/2021.86.j2294.
[3] Sandyutama, Y., Samang, L., Imran, A. M., & Harianto, T. (2015). Full Scale Model Test of Consolidation Acceleration on Soft Soil deposition with Combination of Timber Pile and PVD (Hybrid Pile). IJIRAE, 2(10): 23-28.
[4] Moayed, R. Z., & Naeini, S. A. (2012). Imrovement of loose sandy soil deposits using micropiles. KSCE Journal of Civil Engineering, 16(3), 334–340. doi:10.1007/s12205-012-1390-2.
[5] Gerolymos, N., Escoffier, S., Gazetas, G., & Garnier, J. (2009). Numerical modeling of centrifuge cyclic lateral pile load experiments. Earthquake Engineering and Engineering Vibration, 8(1), 61–76. doi:10.1007/s11803-009-9005-8.
[6] Arshad, M., & O'Kelly, B. C. (2016). Analysis and Design of Monopile Foundations for Offshore Wind-Turbine Structures. Marine Georesources and Geotechnology, 34(6), 503–525. doi:10.1080/1064119X.2015.1033070.
[7] Poulos, H. G. (1982). Influence of cyclic loading on axial pile response. Proceedings 2nd Conference Numerical Methods in Offshore Piling, University of Texas at Austin, 29-30 April, 1982, Austin, United States.
[8] Ashour, M., Norris, G., & Pilling, P. (1998). Lateral Loading of a Pile in Layered Soil Using the Strain Wedge Model. Journal of Geotechnical and Geoenvironmental Engineering, 124(4), 303–315. doi:10.1061/(asce)1090-0241(1998)124:4(303).
[9] Basack, S. (2010). A boundary element analysis on the influence of KRC and e/d on the performance of cyclically loaded single pile in clay. Latin American Journal of Solids and Structures, 7(3), 265–284. doi:10.1590/S1679-78252010000300003.
[10] Hussien, M. N., Tobita, T., Iai, S., & Rollins, K. M. (2012). Vertical loads effect on the lateral pile group resistance in sand. Geomechanics and Geoengineering, 7(4), 263–282. doi:10.1080/17486025.2011.598571.
[11] Abbasa, J. M., Chik, Z., & Taha, M. R. (2015). Influence of axial load on the lateral pile groups response in cohesionless and cohesive soil. Frontiers of Structural and Civil Engineering, 9(2), 176–193. doi:10.1007/s11709-015-0289-7.
[12] Abbas Al-Shamary, J. M., Chik, Z., & Taha, M. R. (2018). Modeling the lateral response of pile groups in cohesionless and cohesive soils. International Journal of Geo-Engineering, 9(1). doi:10.1186/s40703-017-0070-y.
[13] Gu, M., Kong, L., Chen, R., Chen, Y., & Bian, X. (2014). Response of 1í—2 pile group under eccentric lateral loading. Computers and Geotechnics, 57, 114–121. doi:10.1016/j.compgeo.2014.01.007.
[14] Mahmood, A. K., & Abbas, J. M. (2019). The Effect of Vertical Loads and the Pile Shape on Pile Group Response under Lateral Two-Way Cyclic Loading. Civil Engineering Journal, 5(11), 2377–2391. doi:10.28991/cej-2019-03091418.
[15] Martin, J. R., Olgun, C. G., Mitchell, J. K., & Durgunoglu, H. T. (2004). High-Modulus Columns for Liquefaction Mitigation. Journal of Geotechnical and Geoenvironmental Engineering, 130(6), 561–571. doi:10.1061/(asce)1090-0241(2004)130:6(561).
[16] Suheriyatna, L., Tjaronge, M. W., & Harianto, T. (2015). Full Scale Model Test of Soil Reinforcement on Soft Soil Deposition with Inclined Timber Pile. International Journal of Innovative Research in Advanced Engineering, 9(2), 85-91.
[17] Harianto, T., Samang, L., Suheriyatna, Y. S., & Sandyutama, Y. (2016). Field Investigation of the Performance of Soft Soil Reinforcement with Inclined Pile. 5th International Conference on Geotechnical and Geophysical Site Characterisation, 5-9 September, 2016, Queensland, Australia.
[18] L, B., L, L., M, X., W, H., & C, W. (n.d.). The selection analysis of 10 year old eucalyptus pellita provenance and family. Journal of South China Agricultural University, 32(4), 72–77.
[19] Poubel, D. da S., Garcia, R. A., Latorraca, J. V. de F., & Carvalho, A. M. de. (2011). Anatomical Structure and Physical Properties of Eucalyptus pellita F. Muell wood. Forest and Environment, 18(2), 117–126. doi:10.4322/floram.2011.029.
[20] Susilawati, S., & Marsoem, S. N. (2006). Variation in Wood Physical Properties of Eucalyptus Growing in Seedling Seed Orchard in Pleihari, South Kalimantan. Indonesian Journal of Forestry Research, 3(2), 123–138. doi:10.20886/ijfr.2006.3.2.123-138.
[21] Fatimah, S., Susanto, M., & Ganis, L. (2013). Study of the Chemical Components of Eucalyptus Pellita F. Muell Wood from plus Trees from Second Generation Offspring Tests in Wonogiri, Central Java. Journal of Forestry Science, 7(1), 57–69. doi:10.22146/jik.6138.
[22] Suyadi, Harianto, T., Muhiddin, A. B., & Arsyad, A. (2022). Effect of eucalyptus pellita timber-PVD hybrid pile as a vertical drain on soft soil. IOP Conference Series: Earth and Environmental Science, 1117(1), 12012. doi:10.1088/1755-1315/1117/1/012012.
[23] Koester, J. P., & Tsuchida, T. (1988). Earthquake-induced liquefaction of fine-grained soils-considerations from Japanese research. Department of the Army US Army Corps of Engineers, Washington, United States.
[24] Prakash, S. (1981). Soil dynamics. McGraw-Hill Companies, New York, United States.
[25] GDP-9. (2015). Geotechnical Design Procedure: Liquefaction Potential of Cohesionless Soils. Geotechnical Engineering Bureau, Department of Transportation, New York, United States.
[26] Iai, S. (1989). Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field. Soils and Foundations, 29(1), 105–118. doi:10.3208/sandf1972.29.105.
[27] No.029/T/BM/1999. (1999). Technical Guidelines for Implementing Kay U Cone Foundations on Soft and Peaty Soils. Appendix No. 6 of the Decree of the Director General of Highways Ministry of Public Works, Department of Public Works of the Republic of Indonesia, Jakarta, Indonesia.
[28] Alsaleh, H., & Shahrour, I. (2009). Influence of plasticity on the seismic soil-micropiles-structure interaction. Soil Dynamics and Earthquake Engineering, 29(3), 574–578. doi:10.1016/j.soildyn.2008.04.008.
[29] Ha, I. S., Olson, S. M., Seo, M. W., & Kim, M. M. (2011). Evaluation of re-liquefaction resistance using shaking table tests. Soil Dynamics and Earthquake Engineering, 31(4), 682–691. doi:10.1016/j.soildyn.2010.12.008.
[30] Yuan, B., Chen, R., Teng, J., Wang, Y., Chen, W., Peng, T., Feng, Z., Yu, Y., & Dong, J. (2015). Effect of Sand Relative Density on Response of a Laterally Loaded Pile and Sand Deformation. Journal of Chemistry, 2015. doi:10.1155/2015/891212.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.