The Behavior of Dredged Soil-Shredded Rubber Embankment Stabilized with Natural Minerals as a Road Foundation Layer
Downloads
Doi: 10.28991/CEJ-2023-09-05-016
Full Text: PDF
Downloads
[2] Balkaya, M. (2019). Beneficial Use of Dredged Materials in Geotechnical Engineering. In: Balkaya, N., Guneysu, S. (eds) Recycling and Reuse Approaches for Better Sustainability. Environmental Science and Engineering, Springer, Cham, Switzerland. doi:10.1007/978-3-319-95888-0_3.
[3] Zheng, A. R., Liu, F., & Chen, J. (2014). Study on consolidation test for fresh soft dredger fill. Applied Mechanics and Materials, 501–504, 71–74. doi:10.4028/www.scientific.net/AMM.501-504.71.
[4] Gupta, A., Arora, V. K., & Biswas, S. (2017). Contaminated dredged soil stabilization using cement and bottom ash for use as highway subgrade fill. International Journal of Geo-Engineering, 8(1). doi:10.1186/s40703-017-0057-8.
[5] Jan, O. Q., & Mir, B. A. (2018). Strength Behaviour of Cement Stabilised Dredged Soil. International Journal of Geosynthetics and Ground Engineering, 4(2), 16. doi:10.1007/s40891-018-0133-y.
[6] Jamsawang, P., Charoensil, S., Namjan, T., Jongpradist, P., & Likitlersuang, S. (2021). Mechanical and microstructural properties of dredged sediments treated with cement and fly ash for use as road materials. Road Materials and Pavement Design, 22(11), 2498–2522. doi:10.1080/14680629.2020.1772349.
[7] Beeghly, J., & Schrock, M. (2010). Dredge material stabilization using the pozzolanic or sulfo-pozzolanic reaction of lime by-products to make an engineered structural fill. International Journal of Soil, Sediment and Water, 3(1), 1-22.
[8] Kumar, D., Soni, A., & Kumar, M. (2022). Retrieval of Land Surface Temperature from Landsat-8 Thermal Infrared Sensor Data. Journal of Human, Earth, and Future, 3(2), 159-168. doi:10. 28991/HEF-2022-03-02-02.
[9] Harianto, T., Utami, W.D. (2021). Effect of Mineral Additives on the Strength Characteristics of a Laterite Soil. Advances in Sustainable Construction and Resource Management. Lecture Notes in Civil Engineering, 144. Springer, Singapore. doi:10.1007/978-981-16-0077-7_37.
[10] Sadek, Y., Rikioui, T., Abdoun, T., & Dadi, A. (2022). Influence of Compaction Energy on Cement Stabilized Soil for Road Construction. Civil Engineering Journal, 8(3), 580-594. doi:10.28991/CEJ-2022-08-03-012.
[11] Mehta, P. K., & Monteiro, P. J. (2014). Concrete: microstructure, properties, and materials. McGraw-Hill Education, New York, United States.
[12] Feiz, R., Ammenberg, J., Baas, L., Eklund, M., Helgstrand, A., & Marshall, R. (2015). Improving the CO2 performance of cement, part I: Utilizing life-cycle assessment and key performance indicators to assess development within the cement industry. Journal of Cleaner Production, 98, 272–281. doi:10.1016/j.jclepro.2014.01.083.
[13] Harianto, T., Hayashi, S., Du, Y. J., & Suetsugu, D. (2008). Effects of fiber additives on the desiccation crack behavior of the compacted Akaboku soil as a material for landfill cover barrier. Water, Air, and Soil Pollution, 194(1–4), 141–149. doi:10.1007/s11270-008-9703-2.
[14] Tang, C.-S., Wang, D.-Y., Cui, Y.-J., Shi, B., & Li, J. (2016). Tensile Strength of Fiber-Reinforced Soil. Journal of Materials in Civil Engineering, 28(7). doi:10.1061/(asce)mt.1943-5533.0001546.
[15] Sabat, A. K., & Pradhan, A. (2014). Fiber reinforced-fly ash stabilized expansive soil mixes as subgrade material in flexible pavement. Electronic Journal of Geotechnical Engineering, 19, 5757-5770.
[16] Das, N., & Singh, S. K. (2019). Geotechnical behaviour of lateritic soil reinforced with brown waste and synthetic fibre. International Journal of Geotechnical Engineering, 13(3), 287–297. doi:10.1080/19386362.2017.1344002.
[17] Harianto, T., Hayashi, S., Du, Y.J., & Suetsugu, D. (2008). Experimental Investigation on Strength and Mechanical Behavior of Compacted Soil-fiber Mixtures. Geosynthetics in Civil and Environmental Engineering, Springer, Berlin, Germany. doi:10.1007/978-3-540-69313-0_75.
[18] Zoubir, W., Harichane, K., & Ghrici, M. (2013). Effect of lime and natural pozzolana on dredged sludge engineering properties. Electronic Journal of Geotechnical Engineering, 18(c), 589-600.
[19] Li, W., Yang, S., Xiao, Y., Fu, X., Hu, J., & Wang, T. (2018). Rate and Distribution of Sedimentation in the Three Gorges Reservoir, Upper Yangtze River. Journal of Hydraulic Engineering, 144(8). doi:10.1061/(asce)hy.1943-7900.0001486.
[20] Nguyen, T. T. M., Rabbanifar, S., Brake, N. A., Qian, Q., Kibodeaux, K., Crochet, H. E., Oruji, S., Whitt, R., Farrow, J., Belaire, B., Bernazzani, P., & Jao, M. (2018). Stabilization of Silty Clayey Dredged Material. Journal of Materials in Civil Engineering, 30(9). doi:10.1061/(asce)mt.1943-5533.0002391.
[21] Huang, Y., Zhu, W., Zhang, C., Wang, S., & Zhang, N. (2010). Experimental Study on Dredged Material Improvement for Highway Subgrade Soil. Paving Materials and Pavement Analysis. doi:10.1061/41104(377)41.
[22] Park, J., Son, Y., Noh, S., & Bong, T. (2016). The suitability evaluation of dredged soil from reservoirs as embankment material. Journal of Environmental Management, 183, 443–452. doi:10.1016/j.jenvman.2016.08.063.
[23] Yu, H., Yin, J., Soleimanbeigi, A., & Likos, W. J. (2017). Effects of Curing Time and Fly Ash Content on Properties of Stabilized Dredged Material. Journal of Materials in Civil Engineering, 29(10). doi:10.1061/(asce)mt.1943-5533.0002032.
[24] Foose, G. J., Benson, C. H., & Bosscher, P. J. (1996). Sand Reinforced with Shredded Waste Tires. Journal of Geotechnical Engineering, 122(9), 760–767. doi:10.1061/(asce)0733-9410(1996)122:9(760).
[25] Attom, M. F. (2006). The use of shredded waste tires to improve the geotechnical engineering properties of sands. Environmental Geology, 49(4), 497–503. doi:10.1007/s00254-005-0003-5.
[26] Yang, S., Lohnes, R. A., & Kjartanson, B. H. (2002). Mechanical properties of shredded tires. Geotechnical Testing Journal, 25(1), 44–52. doi:10.1520/gtj11078j.
[27] Tiwari, B., Ajmera, B., Moubayed, S., Lemmon, A., Styler, K., & Martinez, J. G. (2014). Improving Geotechnical Behavior of Clayey Soils with Shredded Rubber Tires-Preliminary Study. Geo-Congress 2014 Technical Papers. doi:10.1061/9780784413272.362.
[28] Naval, S., & Kumar, A. (2016). Plate Load Tests on Granular Soils Reinforced with Waste Tire Fibers. Geo-Chicago 2016. doi:10.1061/9780784480144.084.
[29] Bayat, O., Askarani, K. K., & Hajiannia, A. (2019). Effects of Waste Tire on the Shear Strength of Sand. International Journal of Structural and Civil Engineering Research, 384–389. doi:10.18178/ijscer.8.4.384-389.
[30] ASTM:D 2487 -17. (2020). Standard Practice for classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.
[31] Edinçliler, A., Baykal, G., & Saygili, A. (2010). Influence of different processing techniques on the mechanical properties of used tires in embankment construction. Waste Management, 30(6), 1073–1080. doi:10.1016/j.wasman.2009.09.031.
[32] ASTMD854-14. (2016). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-14.
[33] ASTM C136/C136M-14. (2020). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0136_C0136M-14.
[34] ASTM D4318-17e1. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.
[35] ASTM D698-07. (2017). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12400 ft-ibf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-07.
[36] ASTM C618-03. (2017). Standard Specification for Fly Ash and Raw or Calcinated Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-03.
[37] ASTM D2166/D2166M-13. (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D2166_D2166M-13.
[38] ASTM D1883-14. (2016). Standard test method for California bearing ratio (CBR) of laboratory-compacted soils. ASTM International, Pennsylvania, United States. doi:10.1520/D1883-14.
[39] ASTM D6951/D6951M-09. (2009). Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications. ASTM International, Pennsylvania, United States.
[40] ASTM D1194-94. (2017). Standard Test Method for Bearing Capacity of Soil for Static Load and Spread Footings. ASTM International, Pennsylvania, United States.
[41] Harianto, T. (2022). Performance of Subbase Layer with Geogrid Reinforcement and Zeolite-Waterglass Stabilization. Civil Engineering Journal (Iran), 8(2), 251–262. doi:10.28991/CEJ-2022-08-02-05.
[42] Mir, B. A. (2015). Some studies on the effect of fly ash and lime on physical and mechanical properties of expansive clay. International Journal of Civil Engineering, 13(3–4), 203–212.
[43] Al-Swaidani, A., Hammoud, I., & Meziab, A. (2016). Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 714–725. doi:10.1016/j.jrmge.2016.04.002.
[44] Kalkan, E., Yarbaşı, N., Bilici, Ö., & Karimdoust, S. (2022). Effects of quartzite on the freeze–thaw resistance of clayey soil material from Erzurum, NE Turkey. Bulletin of Engineering Geology and the Environment, 81(5). https://doi.org/10.1007/s10064-022-02691-2.
[45] Bahadori, H., Hasheminezhad, A., & Taghizadeh, F. (2019). Experimental Study on Marl Soil Stabilization Using Natural Pozzolans. Journal of Materials in Civil Engineering, 31(2). doi:10.1061/(asce)mt.1943-5533.0002577.
[46] Mariri, M., Ziaie Moayed, R., & Kordnaeij, A. (2019). Stress–Strain Behavior of Loess Soil Stabilized with Cement, Zeolite, and Recycled Polyester Fiber. Journal of Materials in Civil Engineering, 31(12). doi:10.1061/(asce)mt.1943-5533.0002952.
[47] Tafti, M. F., & Emadi, M. Z. (2016). Impact of using recycled tire fibers on the mechanical properties of clayey and sandy soils. Electronic Journal of Geotechnical Engineering, 21, 7113-7225.
[48] SNI-03-3438-1994. (1994). Procedures for Soil Stabilization with Portland Cement for Roads. National Standardization Board, Jakarta, Indonesia. (In Indonesian).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.