The Behavior of Dredged Soil-Shredded Rubber Embankment Stabilized with Natural Minerals as a Road Foundation Layer

Komang A. Utama, Tri Harianto, A. B. Muhiddin, Ardy Arsyad


Recently, geotechnical studies have been conducted more progressively to utilize dredged soil. The inclusion of shredded rubber (SR) and natural minerals (NM) to stabilize dredged soil (DS) has become an exciting issue in the geotechnical field. This technique can be a promising environmental innovation for the future. This study aimed to investigate the unconfined compressive strength (UCS), California bearing ratio (CBR), and embankment performance under the strip footing test. The UCS sample was prepared using shredded rubber with a proportion of 2% and 3% and natural minerals with a proportion of 3%, 6%, 9%, and 12% from the dry weight of the soil. Whereas for the CBR samples (both in un-soaked and soaked conditions) were also prepared with a proportion of 2% and 3% shredded rubber and 6% and 9% natural minerals from the dry weight of the soil as well. The strip footing test was conducted in small-scale laboratory tests to evaluate the performance of stabilized dredged soil embankments. The applied load test was gradually increased until the embankment collapsed. The results showed that adding shredded rubber and natural minerals could increase the UCS value by 3–4 times and the CBR value by 2–3 times. Furthermore, 84% and 116% efficient results were obtained in the strip footing test for the 7 and 14 days of curing, respectively. Therefore, the utilization of dredged soil stabilized with SR and NM can be considered for use as a road foundation layer.


Doi: 10.28991/CEJ-2023-09-05-016

Full Text: PDF


Dredged Soil; Shredded Rubber; Natural Minerals; Road Foundation Layer.


Mohammad, S., Akram, W., & Mirza, S. A. (2018). Geotechnical Characterization of Dredged Material and Effect of Lime Stabilisation on its Strength Characteristics. Applied Mechanics and Materials, 877, 289–293. doi:10.4028/ amm.877.289.

Balkaya, M. (2019). Beneficial Use of Dredged Materials in Geotechnical Engineering. In: Balkaya, N., Guneysu, S. (eds) Recycling and Reuse Approaches for Better Sustainability. Environmental Science and Engineering, Springer, Cham, Switzerland. doi:10.1007/978-3-319-95888-0_3.

Zheng, A. R., Liu, F., & Chen, J. (2014). Study on consolidation test for fresh soft dredger fill. Applied Mechanics and Materials, 501–504, 71–74. doi:10.4028/

Gupta, A., Arora, V. K., & Biswas, S. (2017). Contaminated dredged soil stabilization using cement and bottom ash for use as highway subgrade fill. International Journal of Geo-Engineering, 8(1). doi:10.1186/s40703-017-0057-8.

Jan, O. Q., & Mir, B. A. (2018). Strength Behaviour of Cement Stabilised Dredged Soil. International Journal of Geosynthetics and Ground Engineering, 4(2), 16. doi:10.1007/s40891-018-0133-y.

Jamsawang, P., Charoensil, S., Namjan, T., Jongpradist, P., & Likitlersuang, S. (2021). Mechanical and microstructural properties of dredged sediments treated with cement and fly ash for use as road materials. Road Materials and Pavement Design, 22(11), 2498–2522. doi:10.1080/14680629.2020.1772349.

Beeghly, J., & Schrock, M. (2010). Dredge material stabilization using the pozzolanic or sulfo-pozzolanic reaction of lime by-products to make an engineered structural fill. International Journal of Soil, Sediment and Water, 3(1), 1-22.

Kumar, D., Soni, A., & Kumar, M. (2022). Retrieval of Land Surface Temperature from Landsat-8 Thermal Infrared Sensor Data. Journal of Human, Earth, and Future, 3(2), 159-168. doi:10. 28991/HEF-2022-03-02-02.

Harianto, T., Utami, W.D. (2021). Effect of Mineral Additives on the Strength Characteristics of a Laterite Soil. Advances in Sustainable Construction and Resource Management. Lecture Notes in Civil Engineering, 144. Springer, Singapore. doi:10.1007/978-981-16-0077-7_37.

Sadek, Y., Rikioui, T., Abdoun, T., & Dadi, A. (2022). Influence of Compaction Energy on Cement Stabilized Soil for Road Construction. Civil Engineering Journal, 8(3), 580-594. doi:10.28991/CEJ-2022-08-03-012.

Mehta, P. K., & Monteiro, P. J. (2014). Concrete: microstructure, properties, and materials. McGraw-Hill Education, New York, United States.

Feiz, R., Ammenberg, J., Baas, L., Eklund, M., Helgstrand, A., & Marshall, R. (2015). Improving the CO2 performance of cement, part I: Utilizing life-cycle assessment and key performance indicators to assess development within the cement industry. Journal of Cleaner Production, 98, 272–281. doi:10.1016/j.jclepro.2014.01.083.

Harianto, T., Hayashi, S., Du, Y. J., & Suetsugu, D. (2008). Effects of fiber additives on the desiccation crack behavior of the compacted Akaboku soil as a material for landfill cover barrier. Water, Air, and Soil Pollution, 194(1–4), 141–149. doi:10.1007/s11270-008-9703-2.

Tang, C.-S., Wang, D.-Y., Cui, Y.-J., Shi, B., & Li, J. (2016). Tensile Strength of Fiber-Reinforced Soil. Journal of Materials in Civil Engineering, 28(7). doi:10.1061/(asce)mt.1943-5533.0001546.

Sabat, A. K., & Pradhan, A. (2014). Fiber reinforced-fly ash stabilized expansive soil mixes as subgrade material in flexible pavement. Electronic Journal of Geotechnical Engineering, 19, 5757-5770.

Das, N., & Singh, S. K. (2019). Geotechnical behaviour of lateritic soil reinforced with brown waste and synthetic fibre. International Journal of Geotechnical Engineering, 13(3), 287–297. doi:10.1080/19386362.2017.1344002.

Harianto, T., Hayashi, S., Du, Y.J., & Suetsugu, D. (2008). Experimental Investigation on Strength and Mechanical Behavior of Compacted Soil-fiber Mixtures. Geosynthetics in Civil and Environmental Engineering, Springer, Berlin, Germany. doi:10.1007/978-3-540-69313-0_75.

Zoubir, W., Harichane, K., & Ghrici, M. (2013). Effect of lime and natural pozzolana on dredged sludge engineering properties. Electronic Journal of Geotechnical Engineering, 18(c), 589-600.

Li, W., Yang, S., Xiao, Y., Fu, X., Hu, J., & Wang, T. (2018). Rate and Distribution of Sedimentation in the Three Gorges Reservoir, Upper Yangtze River. Journal of Hydraulic Engineering, 144(8). doi:10.1061/(asce)hy.1943-7900.0001486.

Nguyen, T. T. M., Rabbanifar, S., Brake, N. A., Qian, Q., Kibodeaux, K., Crochet, H. E., Oruji, S., Whitt, R., Farrow, J., Belaire, B., Bernazzani, P., & Jao, M. (2018). Stabilization of Silty Clayey Dredged Material. Journal of Materials in Civil Engineering, 30(9). doi:10.1061/(asce)mt.1943-5533.0002391.

Huang, Y., Zhu, W., Zhang, C., Wang, S., & Zhang, N. (2010). Experimental Study on Dredged Material Improvement for Highway Subgrade Soil. Paving Materials and Pavement Analysis. doi:10.1061/41104(377)41.

Park, J., Son, Y., Noh, S., & Bong, T. (2016). The suitability evaluation of dredged soil from reservoirs as embankment material. Journal of Environmental Management, 183, 443–452. doi:10.1016/j.jenvman.2016.08.063.

Yu, H., Yin, J., Soleimanbeigi, A., & Likos, W. J. (2017). Effects of Curing Time and Fly Ash Content on Properties of Stabilized Dredged Material. Journal of Materials in Civil Engineering, 29(10). doi:10.1061/(asce)mt.1943-5533.0002032.

Foose, G. J., Benson, C. H., & Bosscher, P. J. (1996). Sand Reinforced with Shredded Waste Tires. Journal of Geotechnical Engineering, 122(9), 760–767. doi:10.1061/(asce)0733-9410(1996)122:9(760).

Attom, M. F. (2006). The use of shredded waste tires to improve the geotechnical engineering properties of sands. Environmental Geology, 49(4), 497–503. doi:10.1007/s00254-005-0003-5.

Yang, S., Lohnes, R. A., & Kjartanson, B. H. (2002). Mechanical properties of shredded tires. Geotechnical Testing Journal, 25(1), 44–52. doi:10.1520/gtj11078j.

Tiwari, B., Ajmera, B., Moubayed, S., Lemmon, A., Styler, K., & Martinez, J. G. (2014). Improving Geotechnical Behavior of Clayey Soils with Shredded Rubber Tires-Preliminary Study. Geo-Congress 2014 Technical Papers. doi:10.1061/9780784413272.362.

Naval, S., & Kumar, A. (2016). Plate Load Tests on Granular Soils Reinforced with Waste Tire Fibers. Geo-Chicago 2016. doi:10.1061/9780784480144.084.

Bayat, O., Askarani, K. K., & Hajiannia, A. (2019). Effects of Waste Tire on the Shear Strength of Sand. International Journal of Structural and Civil Engineering Research, 384–389. doi:10.18178/ijscer.8.4.384-389.

ASTM:D 2487 -17. (2020). Standard Practice for classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.

Edinçliler, A., Baykal, G., & Saygili, A. (2010). Influence of different processing techniques on the mechanical properties of used tires in embankment construction. Waste Management, 30(6), 1073–1080. doi:10.1016/j.wasman.2009.09.031.

ASTMD854-14. (2016). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-14.

ASTM C136/C136M-14. (2020). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0136_C0136M-14.

ASTM D4318-17e1. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.

ASTM D698-07. (2017). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12400 ft-ibf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-07.

ASTM C618-03. (2017). Standard Specification for Fly Ash and Raw or Calcinated Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-03.

ASTM D2166/D2166M-13. (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D2166_D2166M-13.

ASTM D1883-14. (2016). Standard test method for California bearing ratio (CBR) of laboratory-compacted soils. ASTM International, Pennsylvania, United States. doi:10.1520/D1883-14.

ASTM D6951/D6951M-09. (2009). Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications. ASTM International, Pennsylvania, United States.

ASTM D1194-94. (2017). Standard Test Method for Bearing Capacity of Soil for Static Load and Spread Footings. ASTM International, Pennsylvania, United States.

Harianto, T. (2022). Performance of Subbase Layer with Geogrid Reinforcement and Zeolite-Waterglass Stabilization. Civil Engineering Journal (Iran), 8(2), 251–262. doi:10.28991/CEJ-2022-08-02-05.

Mir, B. A. (2015). Some studies on the effect of fly ash and lime on physical and mechanical properties of expansive clay. International Journal of Civil Engineering, 13(3–4), 203–212.

Al-Swaidani, A., Hammoud, I., & Meziab, A. (2016). Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 714–725. doi:10.1016/j.jrmge.2016.04.002.

Kalkan, E., Yarbaşı, N., Bilici, Ö., & Karimdoust, S. (2022). Effects of quartzite on the freeze–thaw resistance of clayey soil material from Erzurum, NE Turkey. Bulletin of Engineering Geology and the Environment, 81(5).

Bahadori, H., Hasheminezhad, A., & Taghizadeh, F. (2019). Experimental Study on Marl Soil Stabilization Using Natural Pozzolans. Journal of Materials in Civil Engineering, 31(2). doi:10.1061/(asce)mt.1943-5533.0002577.

Mariri, M., Ziaie Moayed, R., & Kordnaeij, A. (2019). Stress–Strain Behavior of Loess Soil Stabilized with Cement, Zeolite, and Recycled Polyester Fiber. Journal of Materials in Civil Engineering, 31(12). doi:10.1061/(asce)mt.1943-5533.0002952.

Tafti, M. F., & Emadi, M. Z. (2016). Impact of using recycled tire fibers on the mechanical properties of clayey and sandy soils. Electronic Journal of Geotechnical Engineering, 21, 7113-7225.

SNI-03-3438-1994. (1994). Procedures for Soil Stabilization with Portland Cement for Roads. National Standardization Board, Jakarta, Indonesia. (In Indonesian).

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-05-016


  • There are currently no refbacks.

Copyright (c) 2023 Komang Arya Utama, Tri Harianto, Achmad Bakri Muhiddin, Ardy Arsyad

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.