Fire Resistance Analysis of Two-Way Reinforced Concrete Slabs
Downloads
Doi: 10.28991/CEJ-2023-09-05-05
Full Text: PDF
Downloads
[2] Moss, P. J., & Charles Clifton, G. (2004). Modelling of the Cardington LBTF steel frame building fire tests. Fire and Materials, 28(24), 177–198. doi:10.1002/fam.868.
[3] Lim, L. C. S., & Wade, C. A. (2002). Experimental fire tests of two-way concrete slabs. Fire Engineering Research Report 02/12, University of Canterbury, Christchurch, New Zealand
[4] Bailey, C. G., & Toh, W. S. (2007). Behaviour of concrete floor slabs at ambient and elevated temperatures. Fire Safety Journal, 42(6–7), 425–436. doi:10.1016/j.firesaf.2006.11.009.
[5] Jiang, J., & Li, G. Q. (2018). Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures. Fire Safety Journal, 96, 59–73. doi:10.1016/j.firesaf.2017.12.006.
[6] Wang, Y., Dong, Y. L., & Zhou, G. C. (2013). Nonlinear numerical modeling of two-way reinforced concrete slabs subjected to fire. Computers and Structures, 119, 23–36. doi:10.1016/j.compstruc.2012.12.029.
[7] Liao, F., & Huang, Z. (2015). An extended finite element model for modelling localized fracture of reinforced concrete beams in fire. Computers and Structures, 152, 11–26. doi:10.1016/j.compstruc.2015.02.006.
[8] Abu, A. K., Burgess, I. W., & Plank, R. J. (2013). Tensile Membrane Action of Thin Slabs Exposed to Thermal Gradients. Journal of Engineering Mechanics, 139(11), 1497–1507. doi:10.1061/(asce)em.1943-7889.0000597.
[9] Buchanan, A. H., & Abu, A. K. (2016). Structural Design for Fire Safety. Wiley, Hoboken, United States. doi:10.1002/9781118700402.
[10] Johansen, K. W. (1968). Yield-line formulae for slabs. CRC Press, Boca Raton, United States. doi:10.4324/9780203221853.
[11] Franssen, J. M., & Gernay, T. (2016). User's manual for SAFIR 2016c A computer program for analysis of structures subjected to fire. University of Liege, Liège, Belgium.
[12] EN 1992-1-1. (2004). Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. European Committee for Standardization (CEN), Brussels, Belgium.
[13] EN 1991-1-2. (2002). Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. European Committee for Standardization (CEN), Brussels, Belgium.
[14] Shakiba, M., Oskouei, A. V., Karamloo, M., & Doostmohamadi, A. (2021). Effect of mat anchorage on flexural bonding strength between concrete and sand coated GFRP bars. Composite Structures, 273, 114339. doi:10.1016/j.compstruct.2021.114339.
[15] Mak, M. W. T., & Lees, J. M. (2022). Bond strength and confinement in reinforced concrete. Construction and Building Materials, 355, 129012. doi:10.1016/j.conbuildmat.2022.129012.
[16] Krishnaveni, S., & Rajendran, S. (2022). A state of the art on characterization and application of artificial neural networks on bond strength between steel rebar and concrete. Construction and Building Materials, 354, 129124. doi:10.1016/j.conbuildmat.2022.129124.
[17] Ahmed, K. S., Shahjalal, M., Siddique, T. A., & Keng, A. K. (2021). Bond strength of post-installed high strength deformed rebar in concrete. Case Studies in Construction Materials, 15, e00581. doi:10.1016/j.cscm.2021.e00581
[18] Li, Z., Qi, J., Hu, Y., & Wang, J. (2022). Estimation of bond strength between UHPC and reinforcing bars using machine learning approaches. Engineering Structures, 262, 114311. doi:10.1016/j.engstruct.2022.114311.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.