Properties of Palm Oil Ash Geopolymer Containing Alumina Powder and Field Para Rubber Latex

Abideng Hawa, Preecha Salaemae, Akkadath Abdulmatin, Krittiya Ongwuttiwat, Woraphot Prachasearee


Most geopolymer binder is produced using raw materials comprising powder with high silica and alumina content. Additionally, fine aggregate is prepared with river sand for high bulk density. This research proposes using palm oil ash (POA) for the main binder and palm oil clinker (POC) for the fine aggregate. The chemical composition of POA has high levels of silica but low alumina, so it must undergo partial replacement with alumina powder (AP). POA and POC are waste by-products of electrical power plants. The properties to be investigated include compressive strength, bulk density, water absorption, and microstructure. The effect of mixture composition, i.e., POA and field Para rubber latex (FPRL), on those properties is of particular interest. POA was substituted by AP and FPRL at 2.5%, 5%, 7.5%, and 10%, and at 1%, 3%, 5%, and 10%, respectively. Geopolymer mortars were cured at ambient temperature for 24 hours and kept at ambient temperature until testing. The compressive strengths of the geopolymer mortars were tested at 1, 7, and 28 days. The results showed that the optimal mixture consisted of 5% AP in the case of AP only and 1% FPRL in the case of FPRL only, while the ternary optimal mixture of 1% FPRL and 7.5% AP achieved higher compressive strengths than the control (CT) sample at 28.16, 19.98, and 25.30 MPa, respectively, after 28 days of curing. Bulk density increased with the addition of AP and FPRL. The microstructures of the geopolymer samples investigated using SEM-EDX showed the presence of different elements with different mixtures and displayed a dense, compact geopolymer matrix with high compressive strength. Using large amounts of POA in combination with AP and FPRL improved the environmental aspects of landfill disposal.


Doi: 10.28991/CEJ-2023-09-05-017

Full Text: PDF


Alumina Powder; Field Para Rubber Latex; Palm Oil Ash; Palm Oil Clinker; Geopolymer.


Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. doi:10.1016/j.cemconres.2010.11.012.

Hawa, A., & Prachasaree, W. (2020). The development of compressive strength, drying shrinkage and microstructure of fly ash geopolymer with field para rubber latex. Revista Romana de Materiale/ Romanian Journal of Materials, 50(1), 59–68.

Bhavsar, J. K., & Panchal, V. (2022). Ceramic Waste Powder as a Partial Substitute of Fly Ash for Geopolymer Concrete Cured at Ambient Temperature. Civil Engineering Journal (Iran), 8(7), 1369–1387. doi:10.28991/CEJ-2022-08-07-05.

Ge, X., Hu, X., & Shi, C. (2022). Impact of micro characteristics on the formation of high-strength Class F fly ash-based geopolymers cured at ambient conditions. Construction and Building Materials, 352, 129074. doi:10.1016/j.conbuildmat.2022.129074.

Aziz, I. H., Abdullah, M. M. A. B., Mohd Salleh, M. A. A., Azimi, E. A., Chaiprapa, J., & Sandu, A. V. (2020). Strength development of solely ground granulated blast furnace slag geopolymers. Construction and Building Materials, 250, 118720. doi:10.1016/j.conbuildmat.2020.118720.

Nistratov, A. V., Klimenko, N. N., Pustynnikov, I. V., & Vu, L. K. (2022). Thermal Regeneration and Reuse of Carbon and Glass Fibers from Waste Composites. Emerging Science Journal, 6(5), 967-984. doi:10.28991/ESJ-2022-06-05-04.

Hawa, A., Prachasaree, W., & Tonnayopas, D. (2017). Effect of water-to-powder ratios on the compressive strength and microstructure of metakaolin based geopolymers. Indian Journal of Engineering and Materials Sciences, 24(6), 499–506.

Trincal, V., Multon, S., Benavent, V., Lahalle, H., Balsamo, B., Caron, A., Bucher, R., Diaz Caselles, L., & Cyr, M. (2022). Shrinkage mitigation of metakaolin-based geopolymer activated by sodium silicate solution. Cement and Concrete Research, 162, 106993. doi:10.1016/j.cemconres.2022.106993.

Allaoui, D., Nadi, M., Hattani, F., Majdoubi, H., Haddaji, Y., Mansouri, S., Oumam, M., Hannache, H., & Manoun, B. (2022). Eco-friendly geopolymer concrete based on metakaolin and ceramics sanitaryware wastes. Ceramics International, 48(23), 34793–34802. doi:10.1016/j.ceramint.2022.08.068.

Safari, Z., Kurda, R., Al-Hadad, B., Mahmood, F., & Tapan, M. (2020). Mechanical characteristics of pumice-based geopolymer paste. Resources, Conservation and Recycling, 162, 105055. doi:10.1016/j.resconrec.2020.105055.

Hamid, M. A., Yaltay, N., & Türkmenoğlu, M. (2022). Properties of pumice-fly ash based geopolymer paste. Construction and Building Materials, 316, 125665. doi:10.1016/j.conbuildmat.2021.125665.

Gao, Y., Guo, T., Li, Z., Zhou, Z., & Zhang, J. (2022). Mechanism of retarder on hydration process and mechanical properties of red mud-based geopolymer cementitious materials. Construction and Building Materials, 356, 129306. doi:10.1016/j.conbuildmat.2022.129306.

Sun, Z., Tang, Q., Xakalashe, B. S., Fan, X., Gan, M., Chen, X., Ji, Z., Huang, X., & Friedrich, B. (2022). Mechanical and environmental characteristics of red mud geopolymers. Construction and Building Materials, 321, 125564. doi:10.1016/j.conbuildmat.2021.125564.

Ranjbar, N., Mehrali, M., Behnia, A., Alengaram, U. J., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials & Design, 59, 532-539. doi:10.1016/j.matdes.2014.03.037.

Abdulkareem, O. A., Ramli, M., & Matthews, J. C. (2019). Production of geopolymer mortar system containing high calcium biomass wood ash as a partial substitution to fly ash: An early age evaluation. Composites Part B: Engineering, 174, 106941. doi:10.1016/j.compositesb.2019.106941.

Somna, R., Saowapun, T., Somna, K., & Chindaprasirt, P. (2022). Rice husk ash and fly ash geopolymer hollow block based on NaOH activated. Case Studies in Construction Materials, 16, 1092. doi:10.1016/j.cscm.2022.e01092.

Islam, A., Alengaram, U. J., Jumaat, M. Z., Bashar, I. I., & Kabir, S. M. A. (2015). Engineering properties and carbon footprint of ground granulated blast-furnace slag-palm oil fuel ash-based structural geopolymer concrete. Construction and Building Materials, 101(1), 503–521. doi:10.1016/j.conbuildmat.2015.10.026.

Hawa, A., Tonnayopas, D., Prachasaree, W., & Taneerananon, P. (2013). Investigating the effects of oil palm ash in metakaolin based geopolymer. Ceramics-Silikaty, 57(4), 319-327.

Hawa, A., Tonnayopas, D., & Prachasaree, W. (2014). Performance Evaluation of Metakaolin Based Geopolymer Containing Parawood Ash and Oil Palm Ash Blends. Materials Science, 20(3), 339–344. doi:10.5755/

Liu, X., Jiang, J., Zhang, H., Li, M., Wu, Y., Guo, L., Wang, W., Duan, P., Zhang, W., & Zhang, Z. (2020). Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash. Applied Clay Science, 196, 105769. doi:10.1016/j.clay.2020.105769.

Rukzon, S., & Chindaprasirt, P. (2009). Use of disposed waste ash from landfills to replace Portland cement. Waste Management & Research, 27(6), 588-594. doi:10.1177/0734242X09103189.

Liu, M. Y. J., Alengaram, U. J., Santhanam, M., Jumaat, M. Z., & Mo, K. H. (2016). Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Construction and Building Materials, 120, 112–122. doi:10.1016/j.conbuildmat.2016.05.076.

Zarina, Y., Mustafa Al Bakri, A. M., Kamarudin, H., Nizar, I. K., & Rafiza, A. R. (2013). Review on the various ash from palm oil waste as geopolymer material. Reviews on Advanced Materials Science, 34(1), 37–43.

Amri, A., Fathurrahman, G., Najib, A. A., Awaltanova, E., Aman, & Chairul. (2018). Composites of palm oil fuel ash (POFA) based geopolymer and graphene oxide: Structural and compressive strength. IOP Conference Series: Materials Science and Engineering, 420(1), 12063. doi:10.1088/1757-899X/420/1/012063.

Rattanasak, U., Chindaprasirt, P., & Suwanvitaya, P. (2010). Development of high volume rice husk ash alumino silicate composites. International Journal of Minerals, Metallurgy and Materials, 17(5), 654–659. doi:10.1007/s12613-010-0370-0.

Mijarsh, M. J. A., Megat Johari, M. A., & Ahmad, Z. A. (2014). Synthesis of geopolymer from large amounts of treated palm oil fuel ash: Application of the Taguchi method in investigating the main parameters affecting compressive strength. Construction and Building Materials, 52, 473–481. doi:10.1016/j.conbuildmat.2013.11.039.

Darvish, P., Johnson Alengaram, U., Soon Poh, Y., Ibrahim, S., & Yusoff, S. (2020). Performance evaluation of palm oil clinker sand as replacement for conventional sand in geopolymer mortar. Construction and Building Materials, 258, 120352. doi:10.1016/j.conbuildmat.2020.120352.

Ong, E. L. (1998). Latex protein allergy and your gloves/Ong Eng Long, Esah Yip and Lai Pin Fah. Malaysian Rubber Board, Kuala Lumpur, Malaysia.

Rubber Authority of Thailand. (2017). knowledge of latex and constituents in latex. Rubber Authority of Thailand, Bangkok, Thailand. Available online: (accessed on April 2023).

Office of Agricultural Economics. (2020). Para rubber: percentage and monthly output Including countries, regions and provinces. Office of Agricultural Economics, Bangkok, Thailand, Available online: fileups/prcaidata/files/pencent%2063.pdf (accessed on April 2023).

Yaowarat, T., Suddeepong, A., Hoy, M., Horpibulsuk, S., Takaikaew, T., Vichitcholchai, N., Arulrajah, A., & Chinkulkijniwat, A. (2021). Improvement of flexural strength of concrete pavements using natural rubber latex. Construction and Building Materials, 282, 122704. doi:10.1016/j.conbuildmat.2021.122704.

Kabir, S. M. A., Alengaram, U. J., Jumaat, M. Z., Yusoff, S., Sharmin, A., & Bashar, I. I. (2017). Performance evaluation and some durability characteristics of environmental friendly palm oil clinker based geopolymer concrete. Journal of Cleaner Production, 161, 477–492. doi:10.1016/j.jclepro.2017.05.002.

Chandara, C., Sakai, E., Azizli, K. A. M., Ahmad, Z. A., & Hashim, S. F. S. (2010). The effect of unburned carbon in palm oil fuel ash on fluidity of cement pastes containing superplasticizer. Construction and Building Materials, 24(9), 1590–1593. doi:10.1016/j.conbuildmat.2010.02.036.

ASTM C136/C136M-19. (2019). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM international, Pennsylvania, United States. doi:10.1520/C0136_C0136M-19.

ASTM C33/C33M-18. (2018). Standard Specification for Concrete Aggregates. ASTM international, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.

Hawa, A., Tonnayopas, D., & Prachasaree, W. (2013). Performance evaluation and microstructure characterization of metakaolin-based geopolymer containing oil palm ash. The Scientific World Journal, 2013, 857586. doi:10.1155/2013/857586.

ASTM C109/C109M-16a. (2016). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM international, Pennsylvania, United States.

Ranjbar, N., Mehrali, M., Behnia, A., Alengaram, U. J., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials and Design, 59, 532–539. doi:10.1016/j.matdes.2014.03.037.

Islam, A., Alengaram, U. J., Jumaat, M. Z., & Bashar, I. I. (2014). The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials and Design, 56, 833–841. doi:10.1016/j.matdes.2013.11.080.

Silva, P. De, Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 37(4), 512–518. doi:10.1016/j.cemconres.2007.01.003.

Kwek, S. Y., Awang, H., & Cheah, C. B. (2021). Influence of liquid-to-solid and alkaline activator (Sodium silicate to sodium hydroxide) ratios on fresh and hardened properties of alkali-activated palm oil fuel ash geopolymer. Materials, 14(15), 4253. doi:10.3390/ma14154253.

Salih, M. A., Abang Ali, A. A., & Farzadnia, N. (2014). Characterization of mechanical and microstructural properties of palm oil fuel ash geopolymer cement paste. Construction and Building Materials, 65, 592–603. doi:10.1016/j.conbuildmat.2014.05.031.

Hawa, A., Salaemae, P., Prachasaree, W., & Tonnayopas, D. (2017). Compressive strength and microstructural characteristics of fly ash based geopolymer with high volume field para rubber latex. Revista Romana de Materiale/ Romanian Journal of Materials, 47(4), 462–469.

Rath, B., Debnath, R., Paul, A., Velusamy, P., & Balamoorthy, D. (2020). Performance of natural rubber latex on calcined clay-based glass fiber-reinforced geopolymer concrete. Asian Journal of Civil Engineering, 21(6), 1051–1066. doi:10.1007/s42107-020-00261-z.

Rath, B. (2022). Effect of natural rubber latex on the shrinkage behavior and porosity of geopolymer concrete. Structural Concrete, 23(4), 2150–2161. doi:10.1002/suco.202000788.

Kourti, I., Rani, D. A., Deegan, D., Boccaccini, A. R., & Cheeseman, C. R. (2010). Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. Journal of Hazardous Materials, 176(1–3), 704–709. doi:10.1016/j.jhazmat.2009.11.089.

He, P., Wang, M., Fu, S., Jia, D., Yan, S., Yuan, J., Xu, J., Wang, P., & Zhou, Y. (2016). Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceramics International, 42(13), 14416–14422. doi:10.1016/j.ceramint.2016.06.033.

Ariffin, M. A. M., Bhutta, M. A. R., Hussin, M. W., Mohd Tahir, M., & Aziah, N. (2013). Sulfuric acid resistance of blended ash geopolymer concrete. Construction and Building Materials, 43, 80–86. doi:10.1016/j.conbuildmat.2013.01.018.

Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., & Rodríguez, J. (2011). A model for the C-A-S-H gel formed in alkali-activated slag cements. Journal of the European Ceramic Society, 31(12), 2043–2056. doi:10.1016/j.jeurceramsoc.2011.04.036.

Salih, M. A., Farzadnia, N., Abang Ali, A. A., & Demirboga, R. (2015). Development of high strength alkali activated binder using palm oil fuel ash and GGBS at ambient temperature. Construction and Building Materials, 93, 289–300. doi:10.1016/j.conbuildmat.2015.05.119.

Walkley, B., Provis, J. L., San Nicolas, R., Sani, M. A., & Van Deventer, J. S. J. (2015). Stoichiometrically controlled C-(A)-S-H/N-A-S-H gel blends via alkali activation of synthetic precursors. Advances in Applied Ceramics, 114(7), 372–377. doi:10.1179/1743676115Y.0000000057.

Li, W., Wang, Y., Yu, C., He, Z., Zuo, C., & Yu, Y. (2023). Nano-scale study on molecular structure, thermal stability, and mechanical properties of geopolymer. Journal of the Korean Ceramic Society, 60(2), 413–423. doi:10.1007/s43207-022-00276-z.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-05-017


  • There are currently no refbacks.

Copyright (c) 2023 Abideng Hawa

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.