The Acoustic Performance of Natural Composites in Reducing Stress Levels: Textile Industry

Maria P. Widjanarti, Ari Probandari, . Sumardiyono, . Sunarto

Abstract


The porous characteristics of recycled natural fibres make them suitable for use as acoustic materials. Straw and water hyacinth fibres are natural materials that can potentially be used as composites in damping devices. This study evaluated the acoustic performance of two types of reinforced composites containing natural fibers (water hyacinth and rice straw) and gypsum adhesives in reducing stress levels in the textile industry. The evaluation was carried out through laboratory tests using impedance tubes and direct testing in a textile factory to reduce the stress level of production machine workers and operators. Rice straw and water hyacinth fibres were thoroughly mixed in proven mass ratios of 10% and 30% with water and gypsum plaster as a binder. The mixture was pressed into a mould at a pressure of 3 MPa before being heated in an oven at 900ºC for 5 hours. Perforations measuring 4 to 8 mm in diameter were then made at equal distances on the panels. Acoustic panel performance tests were carried out with impedance tubes according to ISO 10534-2 standards at sound frequencies ranging from 0 to 6400 Hz. Field tests were also conducted at a textile factory, with each machine unit generating a sound source of 100 to 110 dB. Heart rate data was collected, and noise measurements were carried out before and after the panels were installed in the area around the operating machines. The results showed that the rice straw-gypsum composite with four perforations performed the best, achieving an α coefficient of 1.0 at a frequency of 1500 Hz and an NRC of 0.50, indicating effective noise reduction. The installation of acoustic panels around the noise source in the textile industry reduced noise levels by up to 9.8 dB and was found to affect workers' heart rates, indicating reduced stress levels. The questionnaire results also showed a significant effect on the stress levels of workers. The use of natural fibers in composite materials has the potential to be an eco-friendly and sustainable solution for soundproofing applications.

 

Doi: 10.28991/CEJ-2023-09-06-02

Full Text: PDF


Keywords


Rice Straw; Water Hyacinth; Gypsum; Composite; Sound Absorption; Stress Level; Acoustic Materials.

References


Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., & Stansfeld, S. (2014). Auditory and non-auditory effects of noise on health. The Lancet, 383(9925), 1325–1332. doi:10.1016/S0140-6736(13)61613-X.

Vos, T., Lim, S. S., Abbafati, C., Abbas, K. M., Abbasi, M., Abbasifard, M., Abbasi-Kangevari, M., Abbastabar, H., Abd-Allah, F., Abdelalim, A., Abdollahi, M., Abdollahpour, I., Abolhassani, H., Aboyans, V., Abrams, E. M., Abreu, L. G., Abrigo, M. R. M., Abu-Raddad, L. J., Abushouk, A. I., … Murray, C. J. L. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258), 1204–1222. doi:10.1016/s0140-6736(20)30925-9.

WHO. (2018). Addressing the rising prevalence of hearing loss. World Health Organization (WHO), Geneva, Switzerland. Available online: https://apps.who.int/iris/bitstream/handle/10665/260336/9789241550260-eng.pdf (accessed on April 2023).

Hammersen, F., Niemann, H., & Hoebel, J. (2016). Environmental noise annoyance and mental health in adults: Findings from the cross-sectional German health update (GEDA) study 2012. International Journal of Environmental Research and Public Health, 13(10), 1–12. doi:10.3390/ijerph13100954.

Ahmadi Kanrash, F., Alimohammad, I., Abolaghasemi, J., & Rahmani, K. (2019). A Study of Mental and Physiological Effects of Chronic Exposure to Noise in an Automotive Industry. Journal of Ergonomics, 7(1), 54–62. doi:10.30699/jergon.7.1.54.

Sime, Y., Hailesilassie, H., & Alenko, A. (2022). Work-related stress and associated factors among employees of Hawassa industrial park, southern Ethiopia: an institutional based cross-sectional study. BMC Psychiatry, 22(1), 387. doi:10.1186/s12888-022-04032-9.

Alimohammadi, I., & Ebrahimi, H. (2017). Comparison between effects of low and high frequency noise on mental performance. Applied Acoustics, 126, 131–135. doi:10.1016/j.apacoust.2017.05.021.

Klompmaker, J. O., Hoek, G., Bloemsma, L. D., Wijga, A. H., van den Brink, C., Brunekreef, B., Lebret, E., Gehring, U., & Janssen, N. A. H. (2019). Associations of combined exposures to surrounding green, air pollution and traffic noise on mental health. Environment International, 129, 525–537. doi:10.1016/j.envint.2019.05.040.

Hwang, W. J., & Hong, O. (2012). Work-related cardiovascular disease risk factors using a socioecological approach: Implications for practice and research. European Journal of Cardiovascular Nursing, 11(1), 114–126. doi:10.1177/1474515111430890.

Assunta, C., Ilaria, S., Simone, D. S., Gianfranco, T., Teodorico, C., Carmina, S., Anastasia, S., Roberto, G., Francesco, T., & Valeria, R. M. (2015). Noise and cardiovascular effects in workers of the sanitary fixtures industry. International Journal of Hygiene and Environmental Health, 218(1), 163–168. doi:10.1016/j.ijheh.2014.09.007.

Walker, E. D., Brammer, A., Cherniack, M. G., Laden, F., & Cavallari, J. M. (2016). Cardiovascular and stress responses to short-term noise exposures—A panel study in healthy males. Environmental Research, 150, 391–397. doi:10.1016/j.envres.2016.06.016.

Rossi, L., Prato, A., Lesina, L., & Schiavi, A. (2018). Effects of low-frequency noise on human cognitive performances in laboratory. Building Acoustics, 25(1), 17–33. doi:10.1177/1351010X18756800.

Reinten, J., Braat-Eggen, P. E., Hornikx, M., Kort, H. S. M., & Kohlrausch, A. (2017). The indoor sound environment and human task performance: A literature review on the role of room acoustics. Building and Environment, 123, 315–332. doi:10.1016/j.buildenv.2017.07.005.

Mokarami, H., Gharibi, V., Kalteh, H. O., Faraji Kujerdi, M., & Kazemi, R. (2020). Multiple environmental and psychosocial work risk factors and sleep disturbances. International Archives of Occupational and Environmental Health, 93(5), 623–633. doi:10.1007/s00420-020-01515-8.

Muzet, A. (2019). Sleep disturbance in adults by noise. Encyclopedia of Environmental Health, 677–681. doi:10.1016/B978-0-444-63951-6.00249-7.

Tao, Y., Ren, M., Zhang, H., & Peijs, T. (2021). Recent progress in acoustic materials and noise control strategies – A review. Applied Materials Today, 24, 101141. doi:10.1016/j.apmt.2021.101141.

Bhingare, N. H., Prakash, S., & Jatti, V. S. (2019). A review on natural and waste material composite as acoustic material. Polymer Testing, 80. doi:10.1016/j.polymertesting.2019.106142.

Iucolano, F., Boccarusso, L., & Langella, A. (2019). Hemp as eco-friendly substitute of glass fibres for gypsum reinforcement: Impact and flexural behaviour. Composites Part B: Engineering, 175(March), 107073. doi:10.1016/j.compositesb.2019.107073.

Silva, C. C. B. da, Terashima, F. J. H., Barbieri, N., & Lima, K. F. de. (2019). Sound absorption coefficient assessment of sisal, coconut husk and sugar cane fibers for low frequencies based on three different methods. Applied Acoustics, 156, 92–100. doi:10.1016/j.apacoust.2019.07.001.

Abdullah, Y., Putra, A., Effendy, H., Farid, W. M., & Ayob, M. R. (2011). Investigation on natural waste fibers from dried paddy straw as a sustainable acoustic absorber. 2011 IEEE Conference on Clean Energy and Technology (CET). doi:10.1109/cet.2011.6041482.

Jena, B. P., Jagdev, A., Satapathy, S., Nayak, B. B., Patel, S., & Mohapatra, T. K. (2018). An Investigation on noise reduction by natural acoustic materials. Materials Today: Proceedings, 5(9), 19237–19241. doi:10.1016/j.matpr.2018.06.280.

Yuvaraj, L., Jeyanthi, S., & Yogananda, A. (2021). An acoustical investigation of partial perforation in jute fiber composite panel. Materials Today: Proceedings, 37, 665–670. doi:10.1016/j.matpr.2020.05.632.

Fatima, S., & Mohanty, A. R. (2011). Acoustical and fire-retardant properties of jute composite materials. Applied Acoustics, 72(2–3), 108–114. doi:10.1016/j.apacoust.2010.10.005.

Taban, E., Khavanin, A., Ohadi, A., Putra, A., Jafari, A. J., Faridan, M., & Soleimanian, A. (2019). Study on the acoustic characteristics of natural date palm fibres: Experimental and theoretical approaches. Building and Environment, 161, 106274. doi:.1016/j.buildenv.2019.106274.

Belakroum, R., Gherfi, A., Bouchema, K., Gharbi, A., Kerboua, Y., Kadja, M., Maalouf, C., Mai, T. H., El Wakil, N., & Lachi, M. (2017). Hygric buffer and acoustic absorption of new building insulation materials based on date palm fibers. Journal of Building Engineering, 12, 132–139. doi:10.1016/j.jobe.2017.05.011.

Nguyen, M. N., Dultz, S., Picardal, F., Bui, A. T. K., Van Pham, Q., & Schieber, J. (2015). Release of potassium accompanying the dissolution of rice straw phytolith. Chemosphere, 119, 371–376. doi:10.1016/j.chemosphere.2014.06.059.

Yang, H. S., Kim, D. J., & Kim, H. J. (2003). Rice straw-wood particle composite for sound absorbing wooden construction materials. Bioresource Technology, 86(2), 117–121. doi:10.1016/S0960-8524(02)00163-3.

Singh, S., & Mohanty, A. R. (2018). HVAC noise control using natural materials to improve vehicle interior sound quality. Applied Acoustics, 140, 100–109. doi:10.1016/j.apacoust.2018.05.013.

Abdullah, Y., Putra, A., Effendy, H., Farid, W., & Ayob, M. (2011). Dried paddy straw fibers as an acoustic absorber: a preliminary study. International Journal of Renewable Energy Resources 3 (2013), 52-56.

Rahmawati, R. D., Masykuri, M., & Dewi, Y. L. R. (2020). Performance of biofoam polyurethane-urea/rice straw waste (Oryza Sativa) as a noise reducer. AIP Conference Proceedings. doi:10.1063/5.0030733.

Ajithram, A., Winowlin Jappes, J. T., Siva, I., & Brintha, N. C. (2022). Utilizing the aquatic waste and investigation on water hyacinth (Eichhornia crassipes) natural plant in to the fibre composite: Waste recycling. Materials Today: Proceedings, 58, 953–958. doi:10.1016/j.matpr.2022.02.301.

Zhou, R., Zhang, M., Li, J., & Zhao, W. (2020). Optimization of preparation conditions for biochar derived from water hyacinth by using response surface methodology (RSM) and its application in Pb2+removal. Journal of Environmental Chemical Engineering, 8(5), 104198. doi:10.1016/j.jece.2020.104198.

Jirawattanasomkul, T., Minakawa, H., Likitlersuang, S., Ueda, T., Dai, J. G., Wuttiwannasak, N., & Kongwang, N. (2021). Use of water hyacinth waste to produce fibre-reinforced polymer composites for concrete confinement: Mechanical performance and environmental assessment. Journal of Cleaner Production, 292, 126041. doi:10.1016/j.jclepro.2021.126041.

Salas-Ruiz, A., & Barbero-Barrera, M. del M. (2019). Performance assessment of water hyacinth–cement composite. Construction and Building Materials, 211, 395–407. doi:10.1016/j.conbuildmat.2019.03.217.

Lisienkova, L., Nosova, L., Shindina, T., Komarova, L., Baranova, E., & Kozhinov, D. (2022). Assessing the Compliance of Extrusion Foamed Polystyrene Production with the Environmental Standards Requirements. Civil Engineering Journal, 8(10), 2305-2317. doi:10.28991/CEJ-2022-08-10-018.

Bouzit, S., Merli, F., Belloni, E., Akhrraz, R., Asri Ssar, S., Sonebi, M., Amziane, S., Buratti, C., & Taha, M. (2022). Investigation of thermo-acoustic and mechanical performance of gypsum-plaster and polyester fibers based materials for building envelope. Materials Today: Proceedings, 58, 1578–1581. doi:10.1016/j.matpr.2022.03.560.

Setyowati, E., Hardiman, G., & Grafiana, N. F. (2021). The acoustical performance of water hyacinth based porous-ceramic compared to the biomass fiber composites for architecture application. Civil Engineering and Architecture, 9(1), 139–149. doi:10.13189/cea.2021.090112.

Za’im, N. N. M., Yusop, H. M., & Ismail, W. N. W. (2021). Synthesis of Water-Repellent Coating for Polyester Fabric. Emerging Science Journal, 5(5), 747-754. doi:10.28991/esj-2021-01309.

Karataş, M. A., & Gökkaya, H. (2018). A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, 14(4), 318-326. doi:10.1016/j.dt.2018.02.001.

Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). Lehninger principles of biochemistry. Macmillan, New York, United States.

Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., & Jeelani, S. (2015). Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology, 4(1), 26–32. doi:10.1016/j.jmrt.2014.10.009.

Walker, L. P., & Wilson, D. B. (1991). Enzymatic hydrolysis of cellulose: An overview. Bioresource Technology, 36(1), 3–14. doi:10.1016/0960-8524(91)90095-2.

Wang, D. W., Wen, Z. H., Glorieux, C., & Ma, L. (2020). Sound absorption of face-centered cubic sandwich structure with micro-perforations. Materials and Design 186, 108344–108353. doi:10.1016/j.matdes.2019.108344.

Jimenez-Espadafor, F. J., Villanueva, J. A. B., García, M. T., Trujillo, E. C., & Blanco, A. M. (2011). Optimal design of acoustic material from tire fluff. Materials & Design, 32(6), 3608-3616. doi:10.1016/j.matdes.2011.02.024.

Hahad, O., Kröller-Schön, S., Daiber, A., & Münzel, T. (2019). The Cardiovascular Effects of Noise. Deutsches Ärzteblatt International. doi:10.3238/arztebl.2019.0245.

Kandola, A., Ashdown-Franks, G., Stubbs, B., Osborn, D. P. J., & Hayes, J. F. (2019). The association between cardiorespiratory fitness and the incidence of common mental health disorders: A systematic review and meta-analysis. Journal of Affective Disorders, 257, 748–757. doi:10.1016/j.jad.2019.07.088.

Kemp, A. H., Quintana, D. S., Quinn, C. R., Hopkinson, P., & Harris, A. W. F. (2014). Major depressive disorder with melancholia displays robust alterations in resting state heart rate and its variability: Implications for future morbidity and mortality. Frontiers in Psychology, 5. doi:10.3389/fpsyg.2014.01387.

Kemp, A. H., Brunoni, A. R., Santos, I. S., Nunes, M. A., Dantas, E. M., De Figueiredo, R. C., Pereira, A. C., Ribeiro, A. L. P., Mill, J. G., Andreão, R. V., Thayer, J. F., Benseñor, I. M., & Lotufo, P. A. (2014). Effects of depression, anxiety, comorbidity, and antidepressants on resting-state heart rate and its variability: An ELSA-Brasil cohort baseline study. American Journal of Psychiatry, 171(12), 1328–1334. doi:10.1176/appi.ajp.2014.13121605.

Nelson, B. W., Low, C. A., Jacobson, N., Areán, P., Torous, J., & Allen, N. B. (2020). Guidelines for wrist-worn consumer wearable assessment of heart rate in biobehavioral research. NPJ Digital Medicine, 3(1), 1-9. doi:10.1038/s41746-020-0297-4.

Khan, H., Kunutsor, S., Kalogeropoulos, A. P., Georgiopoulou, V. V., Newman, A. B., Harris, T. B., Bibbins-Domingo, K., Kauhanen, J., Gheorghiade, M., Fonarow, G. C., Kritchevsky, S. B., Laukkanen, J. A., & Butler, J. (2015). Resting heart rate and risk of incident heart failure: Three prospective cohort studies and a systematic meta-analysis. Journal of the American Heart Association, 4(1). doi:10.1161/JAHA.114.001364.

Sivakumaran, K., Ritonja, J. A., Waseem, H., AlShenaiber, L., Morgan, E., Ahmadi, S. A., Denning, A., Michaud, D., & Morgan, R. L. (2022). Impact of Noise Exposure on Risk of Developing Stress-Related Metabolic Effects: A Systematic Review and Meta-Analysis. Noise & Health, 24(115), 215–230. doi:10.4103/nah.nah_21_22.

Lu, S. Y., Lee, C. L., Lin, K. Y., & Lin, Y. H. (2018). The acute effect of exposure to noise on cardiovascular parameters in young adults. Journal of Occupational Health, 60(4), 289–297. doi:10.1539/joh.2017-0225-OA.

Said, M. A. M., Wellun, Z., & Khamis, N. K. (2022). Effects of Noise Hazards towards Physiology Especially Heart Rate Performance among Worker in Manufacturing Industry and Their Prevention Strategies: A Systematic Review. Iranian Journal of Public Health, 51(8), 1706–1717. doi:10.18502/ijph.v51i8.10251.

Williams, D. W. P., Jarczok, M. N., Ellis, R. J., Hillecke, T. K., Thayer, J. F., & Koenig, J. (2017). Two-week test–retest reliability of the Polar® RS800CXTM to record heart rate variability. Clinical Physiology and Functional Imaging, 37(6), 776–781. doi:10.1111/cpf.12321.

Can, Y. S., Arnrich, B., & Ersoy, C. (2019). Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. Journal of Biomedical Informatics, 92, 103139. doi:10.1016/j.jbi.2019.103139.

Kim, H. G., Cheon, E. J., Bai, D. S., Lee, Y. H., & Koo, B. H. (2018). Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investigation, 15(3), 235–245. doi:10.30773/pi.2017.08.17.

Müller‐Petke, M., & Costabel, S. (2014). Comparison and optimal parameter settings of reference‐based harmonic noise cancellation in time and frequency domains for surface‐NMR. Near Surface Geophysics, 12(2), 199-210. doi:10.3997/1873-0604.2013033.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-06-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Maria Paskanita Widjanarti, Ari Probandari, Sunarto '-, Sumardiyono ,-

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message