Performance Evaluation of Fiber-reinforced Ferroconcrete using Response Surface Methodology

Temitope F. Awolusi, Alenoghena I. Ekhasomhi, Oluwatobi G. Aluko, Olanike O. Akinkurolere, Marc Azab, Ahmed Farouk Deifalla


Fibre-reinforced ferroconcrete is a new-generation type of concrete that has been found to have adequate performance. Global emissions of CO2 as a result of concrete production have damaged the earth's atmosphere. These emissions, together with construction waste, such as ceramic powder and aluminium waste, are considered one of the most harmful wastes to the environment, eventually leading to pollution. In this study, the fibre-reinforced ferroconcrete (FRFC) contained waste aluminium fibre, cement, ceramic waste powder, corrugated wire mesh, and fine and coarse aggregate. The cement content in the concrete mix was partially replaced with Ceramic Powder (CP) in proportions of 0%, 10%, and 20%, while the Aluminum Fibers (AF) were added in proportions 0, 1, and 2% to the concrete mix. The variation of ceramic powder and aluminium fibres was done using the central composite design of Response Surface Methodology (RSM) to create experimental design points meant to improve the fibre-reinforced ferroconcrete's mechanical performance. The results conclude that the mechanical performance of the FRFC was slightly improved more than conventional concrete, where at 20% replacement of ceramic powder and 1% addition of aluminium fibre to the concrete mix. There was more compressive, flexural, and split tensile strength increase than conventional concrete, with control concrete having strengths of 13.060, 5.720, and 3.110 N/mm2 and ferroconcrete 15.88, 6.68, and 3.83 N/mm2 respectively. This was further confirmed with microstructural images. The RSM model, with parameters such as; contour plots, analysis of variance, and optimisation, was used to effectively predict and optimise the responses of the ferroconcrete based on the independent variables (Aluminum fibre and Ceramic Powder) considered. The results of the predicted data show a straight-line linear progression as the coefficient of determination (R2) tends to 1, indicating that the RSM model is suitable for predicting the response of the variables on the FRFC.


Doi: 10.28991/CEJ-2023-09-04-014

Full Text: PDF


Ferroconcrete; RSM-Based Model; Splitting Tensile Strength; Flexural Strength; Concrete Material Optimisation.


Fahmy, E. H., Shaheen, Y. B. I., Abdelnaby, A. M., & Abou Zeid, M. N. (2014). Applying the Ferrocement Concept in Construction of Concrete Beams Incorporating Reinforced Mortar Permanent Forms. International Journal of Concrete Structures and Materials, 8(1), 83–97. doi:10.1007/s40069-013-0062-z.

Karthik, M. P., & Maruthachalam, D. (2015). Experimental study on shear behaviour of hybrid Fibre Reinforced Concrete beams. KSCE Journal of Civil Engineering, 19(1), 259–264. doi:10.1007/s12205-013-2350-1.

Dhilip Kumar, R. G., Sukumar, B., Hemamathi, A., Ram Shankar, P., & Balki, S. (2021). Experimental investigation on Ferrocement slab using partial replacement of cement by ceramic powder. Journal of Physics: Conference Series, 2070(1), 012195. doi:10.1088/1742-6596/2070/1/012195.

Kannan, D. M., Aboubakr, S. H., EL-Dieb, A. S., & Reda Taha, M. M. (2017). High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement. Construction and Building Materials, 144, 35–41. doi:10.1016/j.conbuildmat.2017.03.115.

Subaşı, S., Öztürk, H., & Emiroğlu, M. (2017). Utilising of waste ceramic powders as filler material in self-consolidating concrete. Construction and Building Materials, 149, 567–574. doi:10.1016/j.conbuildmat.2017.05.180.

Rawat, R., Singh, A., & Bohra, M. (2019). Investigation of Ceramic Waste as Supplementary Cementitious Material in Concrete. International Journal of Applied Engineering Research, 14(9), 20–25.

Steiner, L. R., Bernardin, A. M., & Pelisser, F. (2015). Effectiveness of ceramic tile polishing residues as supplementary cementitious materials for cement mortars. Sustainable Materials and Technologies, 4, 30–35. doi:10.1016/j.susmat.2015.05.001.

Jackiewicz-Rek, W., Załęgowski, K., Garbacz, A., & Bissonnette, B. (2015). Properties of cement mortars modified with ceramic waste fillers. Procedia Engineering, 108, 681–687. doi:10.1016/j.proeng.2015.06.199.

Awoyera, P. O., Dawson, A. R., Thom, N. H., & Akinmusuru, J. O. (2017). Suitability of mortars produced using laterite and ceramic wastes: Mechanical and microscale analysis. Construction and Building Materials, 148, 195–203. doi:10.1016/j.conbuildmat.2017.05.031.

Rawat, S., & Daverey, A. (2018). Characterisation of household solid waste and current status of municipal waste management in Rishikesh, Uttarakhand. Environmental Engineering Research, 23(3), 323-329. doi:10.4491/eer.2017.175.

El-Gamal, S. M. A., El-Hosiny, F. I., Amin, M. S., & Sayed, D. G. (2017). Ceramic waste as an efficient material for enhancing the fire resistance and mechanical properties of hardened Portland cement pastes. Construction and Building Materials, 154, 1062–1078. doi:10.1016/j.conbuildmat.2017.08.040.

Halicka, A., Ogrodnik, P., & Zegardlo, B. (2013). Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materials, 48, 295–305. doi:10.1016/j.conbuildmat.2013.06.063.

Chen, X., Zhang, D., Cheng, S., Xu, X., Zhao, C., Wang, X., Wu, Q., & Bai, X. (2022). Sustainable reuse of ceramic waste powder as a supplementary cementitious material in recycled aggregate concrete: Mechanical properties, durability and microstructure assessment. Journal of Building Engineering, 52, 104418. doi:10.1016/j.jobe.2022.104418.

Rajaraman, J. (2017). Study on structural behavior of aluminium fiber in concrete. Journal of Engineering and Applied Sciences, 12(11), 9182-9183. doi:10.36478/jeasci.2017.9182.9183.

Sabapathy, Y. K., Sabarish, S., Nithish, C. N. A., Ramasamy, S. M., & Krishna, G. (2021). Experimental study on strength properties of aluminium fibre reinforced concrete. Journal of King Saud University - Engineering Sciences, 33(1), 23–29. doi:10.1016/j.jksues.2019.12.004.

Muwashee, R. S., Al-Jameel, H. A., & Jabal, Q. A. (2018). Investigating the behavior of concrete and mortar reinforced with aluminum waste strips. International Journal of Engineering and Technology, 7(4), 211–213. doi:10.14419/ijet.v7i4.37.24103.

Rita, B., & Lauren Fraser, R. M. (2018). Exploring the Properties of Fiber Reinforced Concrete. February 2018, 1–48. Available online: (accessed on March 2023).

Pakravan, H. R., Latifi, M., & Jamshidi, M. (2017). Hybrid short fiber reinforcement system in concrete: A review. Construction and Building Materials, 142, 280–294. doi:10.1016/j.conbuildmat.2017.03.059.

Zhang, P., Han, S., Ng, S., & Wang, X.-H. (2018). Fiber-Reinforced Concrete with Application in Civil Engineering. Advances in Civil Engineering, 2018, 1–4. doi:10.1155/2018/1698905.

Channa, I. A., & Saand, A. (2021). Mechanical behavior of concrete reinforced with waste aluminium strips. Civil Engineering Journal (Iran), 7(7), 1169–1182. doi:10.28991/cej-2021-03091718.

Sarabia, L. A., & Ortiz, M. C. (2009). Response Surface Methodology. Comprehensive Chemometrics, 345–390, John Wiley & Sons, Hoboken, United States. doi:10.1016/B978-044452701-1.00083-1.

Upasani, R. S., & Banga, A. K. (2004). Response surface methodology to investigate the iontophoretic delivery of tacrine hydrochloride. Pharmaceutical Research, 21(12), 2293–2299. doi:10.1007/s11095-004-7682-6.

Awolusi, T. F., Oke, L. O., Akinkurolere, O. O., Ubani, D. P., Bamisaye, R. T., & Aluko, O. G. (2021). The Application of Response Surface Methodology in Understanding the Compressive Strength and Water Absorption Capacity of Sandcrete Blocks. Silicon, 13(11), 4123–4132. doi:10.1007/s12633-020-00701-0.

Song, H., Ahmad, A., Ostrowski, K. A., & Dudek, M. (2021). Analysing the compressive strength of ceramic waste-based concrete using experiment and artificial neural network (Ann) approach. Materials, 14(16). doi:10.3390/ma14164518.

Akhtar, J. N., Ahmad, T., Akhtar, M. N., & Abbas, H. (2014). Influence of Fibers and Fly Ash on Mechanical Properties of Concrete. American Journal of Civil Engineering and Architecture, 2(2), 64–69. doi:10.12691/ajcea-2-2-2.

Yu, R., Tang, P., Spiesz, P., & Brouwers, H. J. H. (2014). A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA). Construction and Building Materials, 60, 98–110. doi:10.1016/j.conbuildmat.2014.02.059.

Manasa, B., Sowmyashree, T., & Khedagi, S. B. (2018). Experimental Studies on Behaviour of Ferroconcrete Beams. International Journal of Research in Engineering and Technology, 07(03), 28–33. doi:10.15623/ijret.2018.0703005.

ASTM C150/C150M-22. (2022). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-22.

BS EN 12620. (2013). Aggregates for concrete. British Standards Institution, London, United Kingdom.

BS EN 206. (2013). Concrete - specification, performance, production and conformity. British Standards Institution, London, United Kingdom.

Wan Hassan, W. N. F., Ismail, M. A., Lee, H.-S., Meddah, M. S., Singh, J. K., Hussin, M. W., & Ismail, M. (2020). Mixture optimisation of high-strength blended concrete using central composite design. Construction and Building Materials, 243, 118251. doi:10.1016/j.conbuildmat.2020.118251.

BS EN 12350-2. (2009). Testing fresh concrete. Slump-test. British Standards Institution, London, United Kingdom.

ASTM C349-18. (2018). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using Portions of Prisms broken in Flexure). ASTM International, Pennsylvania, United States. doi:10.1520/C0349-18.

BS EN 12390-6. (2009). Testing hardened concrete. Tensile splitting strength of test specimens. British Standards Institution, London, United Kingdom.

ASTM C348-21. (2021). Standard Test Method for Flexural Strength of Hydraulic Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0348-21.

ACI-318-14. (2014). Building Code Requirement for Structural Concrete. American Concrete Institute (ACI), Michigan, United States.

BS EN 12350-2. (2009). Testing fresh concrete. Slump-test. British Standards Institution, London, United Kingdom.

Cheng, Y., Huang, F., Liu, R., Hou, J., & Li, G. (2015). Test research on effects of waste ceramic polishing powder on the permeability resistance of concrete. Materials and Structures, 49(3), 729–738. doi:10.1617/s11527-015-0533-6.

Zeyad, A. M. (2020). Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete. Journal of Materials Research and Technology, 9(3), 4147–4158. doi:10.1016/j.jmrt.2020.02.042.

Kanag, S. Y., Anandan, Y. K., Vaidyanath, P., & Baskar, P. (2016). Strength properties of coated E-glass fibres in concrete. Gradjevinar, 68(9), 697–703. doi:10.14256/JCE.1335.2015.

Kiran, T. S., & Rao, K. S. (2016). Mechanical Properties of Glass Fiber Reinforced Concrete. International Journal of Civil and Structural Engineering Research, 3(2), 164–173.

Datye, P. P., & Pawar, S.S. (2015). Experimental Approach to assess the viability of Aluminium Matrix Composites in Concrete. International Journal of Innovative Research in Science, Engineering and Technology, 4(9), 9035-9038. doi:10.15680/IJIRSET.2015.0409104.

Shao, R., Wu, C., Li, J., & Liu, Z. (2022). Development of sustainable steel fibre-reinforced dry ultra-high performance concrete (DUHPC). Journal of Cleaner Production, 337, 130507. doi:10.1016/j.jclepro.2022.130507.

Liu, Z., Worley II, R., Du, F., Giles, C. D., Dewoolkar, M., Huston, D., & Tan, T. (2021). A study on avalanches of early age basalt fiber reinforced concrete beams during flexure. Journal of Cleaner Production, 279, 123695. doi:10.1016/j.jclepro.2020.123695.

Lazorenko, G., Kasprzhitskii, A., & Fini, E. H. (2022). Polyethylene terephthalate (PET) waste plastic as natural aggregate replacement in geopolymer mortar production. Journal of Cleaner Production, 375, 134083. doi:10.1016/j.jclepro.2022.134083.

Ravinder, K. (2016). Strength Characteristics of Coca-Cola Tin Waste As Fibres in Concrete. International Journal of Advanced Research Foundation, 3(2), 9–12.

Ilya, J., & Cheow Chea, C. (2017). Mechanical behaviour of fibre reinforced concrete using soft – drink can. IOP Conference Series: Materials Science and Engineering, 271, 012079. doi:10.1088/1757-899x/271/1/012079.

Parida, A., Sarangi, S., & Jayashree, B. (2017). Study the modulus elasticity of HFRC. Journal of Industrial Pollution Control, 33(1), 1209–1213.

Sagar, B., & Sivakumar, M. V. N. (2021). Performance evaluation of basalt fibre-reinforced polymer rebars in structural concrete members–a review. Innovative Infrastructure Solutions, 6, 1-18. doi:10.1007/s41062-020-00452-2.

Talib, N. A. A., Salam, F., Yusof, N. A., Alang Ahmad, S. A., & Sulaiman, Y. (2017). Optimisation of peak current of poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube using response surface methodology/central composite design. RSC Advances, 7(18), 11101–11110. doi:10.1039/c6ra26135c.

Awolusi, T. F., Oke, O. L., Akinkurolere, O. O., Sojobi, A. O., & Aluko, O. G. (2019). Performance comparison of neural network training algorithms in the modeling properties of steel fiber reinforced concrete. Heliyon, 5(1). doi:10.1016/j.heliyon.2018.e01115.

Schober, P., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763–1768. doi:10.1213/ANE.0000000000002864.

Pomerantsev, A. L., & Rodionova, O. Y. (2010). Chemometric view on "comprehensive chemometrics". Chemometrics and Intelligent Laboratory Systems, 103(1), 19-24. doi:10.1016/j.chemolab.2010.05.001.

Ghayeb, H. H., Razak, H. A., Sulong, N. H. R., Hanoon, A. N., Abutaha, F., Ibrahim, H. A., Gordan, M., & Alnahhal, M. F. (2019). Predicting the mechanical properties of concrete using intelligent techniques to reduce CO2 emissions. Materiales de Construccion, 69(334), 0465–2746. doi:10.3989/mc.2019.07018.

Chindaprasirt, P., & Rukzon, S. (2015). Strength and chloride resistance of the blended Portland cement mortar containing rice husk ash and ground river sand. Materials and Structures/Materiaux et Constructions, 48(11), 3771–3777. doi:10.1617/s11527-014-0438-9.

Lasseuguette, E., Burns, S., Simmons, D., Francis, E., Chai, H. K., Koutsos, V., & Huang, Y. (2019). Chemical, microstructural and mechanical properties of ceramic waste blended cementitious systems. Journal of Cleaner Production, 211, 1228–1238. doi:10.1016/j.jclepro.2018.11.240.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-04-014


  • There are currently no refbacks.

Copyright (c) 2023 Temitope Funmilayo Awolusi, Alenoghena Ekhasomhi, Oluwatobi Gbenga Aluko, Olanike Akinkurolere, Azab Marc, Ahmed Farouk Deifalla

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.