Performance Evaluation of Fiber-reinforced Ferroconcrete using Response Surface Methodology
Abstract
Doi: 10.28991/CEJ-2023-09-04-014
Full Text: PDF
Keywords
References
Fahmy, E. H., Shaheen, Y. B. I., Abdelnaby, A. M., & Abou Zeid, M. N. (2014). Applying the Ferrocement Concept in Construction of Concrete Beams Incorporating Reinforced Mortar Permanent Forms. International Journal of Concrete Structures and Materials, 8(1), 83–97. doi:10.1007/s40069-013-0062-z.
Karthik, M. P., & Maruthachalam, D. (2015). Experimental study on shear behaviour of hybrid Fibre Reinforced Concrete beams. KSCE Journal of Civil Engineering, 19(1), 259–264. doi:10.1007/s12205-013-2350-1.
Dhilip Kumar, R. G., Sukumar, B., Hemamathi, A., Ram Shankar, P., & Balki, S. (2021). Experimental investigation on Ferrocement slab using partial replacement of cement by ceramic powder. Journal of Physics: Conference Series, 2070(1), 012195. doi:10.1088/1742-6596/2070/1/012195.
Kannan, D. M., Aboubakr, S. H., EL-Dieb, A. S., & Reda Taha, M. M. (2017). High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement. Construction and Building Materials, 144, 35–41. doi:10.1016/j.conbuildmat.2017.03.115.
Subaşı, S., Öztürk, H., & Emiroğlu, M. (2017). Utilising of waste ceramic powders as filler material in self-consolidating concrete. Construction and Building Materials, 149, 567–574. doi:10.1016/j.conbuildmat.2017.05.180.
Rawat, R., Singh, A., & Bohra, M. (2019). Investigation of Ceramic Waste as Supplementary Cementitious Material in Concrete. International Journal of Applied Engineering Research, 14(9), 20–25.
Steiner, L. R., Bernardin, A. M., & Pelisser, F. (2015). Effectiveness of ceramic tile polishing residues as supplementary cementitious materials for cement mortars. Sustainable Materials and Technologies, 4, 30–35. doi:10.1016/j.susmat.2015.05.001.
Jackiewicz-Rek, W., Załęgowski, K., Garbacz, A., & Bissonnette, B. (2015). Properties of cement mortars modified with ceramic waste fillers. Procedia Engineering, 108, 681–687. doi:10.1016/j.proeng.2015.06.199.
Awoyera, P. O., Dawson, A. R., Thom, N. H., & Akinmusuru, J. O. (2017). Suitability of mortars produced using laterite and ceramic wastes: Mechanical and microscale analysis. Construction and Building Materials, 148, 195–203. doi:10.1016/j.conbuildmat.2017.05.031.
Rawat, S., & Daverey, A. (2018). Characterisation of household solid waste and current status of municipal waste management in Rishikesh, Uttarakhand. Environmental Engineering Research, 23(3), 323-329. doi:10.4491/eer.2017.175.
El-Gamal, S. M. A., El-Hosiny, F. I., Amin, M. S., & Sayed, D. G. (2017). Ceramic waste as an efficient material for enhancing the fire resistance and mechanical properties of hardened Portland cement pastes. Construction and Building Materials, 154, 1062–1078. doi:10.1016/j.conbuildmat.2017.08.040.
Halicka, A., Ogrodnik, P., & Zegardlo, B. (2013). Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materials, 48, 295–305. doi:10.1016/j.conbuildmat.2013.06.063.
Chen, X., Zhang, D., Cheng, S., Xu, X., Zhao, C., Wang, X., Wu, Q., & Bai, X. (2022). Sustainable reuse of ceramic waste powder as a supplementary cementitious material in recycled aggregate concrete: Mechanical properties, durability and microstructure assessment. Journal of Building Engineering, 52, 104418. doi:10.1016/j.jobe.2022.104418.
Rajaraman, J. (2017). Study on structural behavior of aluminium fiber in concrete. Journal of Engineering and Applied Sciences, 12(11), 9182-9183. doi:10.36478/jeasci.2017.9182.9183.
Sabapathy, Y. K., Sabarish, S., Nithish, C. N. A., Ramasamy, S. M., & Krishna, G. (2021). Experimental study on strength properties of aluminium fibre reinforced concrete. Journal of King Saud University - Engineering Sciences, 33(1), 23–29. doi:10.1016/j.jksues.2019.12.004.
Muwashee, R. S., Al-Jameel, H. A., & Jabal, Q. A. (2018). Investigating the behavior of concrete and mortar reinforced with aluminum waste strips. International Journal of Engineering and Technology, 7(4), 211–213. doi:10.14419/ijet.v7i4.37.24103.
Rita, B., & Lauren Fraser, R. M. (2018). Exploring the Properties of Fiber Reinforced Concrete. February 2018, 1–48. Available online: http://www.wpi.edu/Academics/Projects (accessed on March 2023).
Pakravan, H. R., Latifi, M., & Jamshidi, M. (2017). Hybrid short fiber reinforcement system in concrete: A review. Construction and Building Materials, 142, 280–294. doi:10.1016/j.conbuildmat.2017.03.059.
Zhang, P., Han, S., Ng, S., & Wang, X.-H. (2018). Fiber-Reinforced Concrete with Application in Civil Engineering. Advances in Civil Engineering, 2018, 1–4. doi:10.1155/2018/1698905.
Channa, I. A., & Saand, A. (2021). Mechanical behavior of concrete reinforced with waste aluminium strips. Civil Engineering Journal (Iran), 7(7), 1169–1182. doi:10.28991/cej-2021-03091718.
Sarabia, L. A., & Ortiz, M. C. (2009). Response Surface Methodology. Comprehensive Chemometrics, 345–390, John Wiley & Sons, Hoboken, United States. doi:10.1016/B978-044452701-1.00083-1.
Upasani, R. S., & Banga, A. K. (2004). Response surface methodology to investigate the iontophoretic delivery of tacrine hydrochloride. Pharmaceutical Research, 21(12), 2293–2299. doi:10.1007/s11095-004-7682-6.
Awolusi, T. F., Oke, L. O., Akinkurolere, O. O., Ubani, D. P., Bamisaye, R. T., & Aluko, O. G. (2021). The Application of Response Surface Methodology in Understanding the Compressive Strength and Water Absorption Capacity of Sandcrete Blocks. Silicon, 13(11), 4123–4132. doi:10.1007/s12633-020-00701-0.
Song, H., Ahmad, A., Ostrowski, K. A., & Dudek, M. (2021). Analysing the compressive strength of ceramic waste-based concrete using experiment and artificial neural network (Ann) approach. Materials, 14(16). doi:10.3390/ma14164518.
Akhtar, J. N., Ahmad, T., Akhtar, M. N., & Abbas, H. (2014). Influence of Fibers and Fly Ash on Mechanical Properties of Concrete. American Journal of Civil Engineering and Architecture, 2(2), 64–69. doi:10.12691/ajcea-2-2-2.
Yu, R., Tang, P., Spiesz, P., & Brouwers, H. J. H. (2014). A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA). Construction and Building Materials, 60, 98–110. doi:10.1016/j.conbuildmat.2014.02.059.
Manasa, B., Sowmyashree, T., & Khedagi, S. B. (2018). Experimental Studies on Behaviour of Ferroconcrete Beams. International Journal of Research in Engineering and Technology, 07(03), 28–33. doi:10.15623/ijret.2018.0703005.
ASTM C150/C150M-22. (2022). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-22.
BS EN 12620. (2013). Aggregates for concrete. British Standards Institution, London, United Kingdom.
BS EN 206. (2013). Concrete - specification, performance, production and conformity. British Standards Institution, London, United Kingdom.
Wan Hassan, W. N. F., Ismail, M. A., Lee, H.-S., Meddah, M. S., Singh, J. K., Hussin, M. W., & Ismail, M. (2020). Mixture optimisation of high-strength blended concrete using central composite design. Construction and Building Materials, 243, 118251. doi:10.1016/j.conbuildmat.2020.118251.
BS EN 12350-2. (2009). Testing fresh concrete. Slump-test. British Standards Institution, London, United Kingdom.
ASTM C349-18. (2018). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using Portions of Prisms broken in Flexure). ASTM International, Pennsylvania, United States. doi:10.1520/C0349-18.
BS EN 12390-6. (2009). Testing hardened concrete. Tensile splitting strength of test specimens. British Standards Institution, London, United Kingdom.
ASTM C348-21. (2021). Standard Test Method for Flexural Strength of Hydraulic Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0348-21.
ACI-318-14. (2014). Building Code Requirement for Structural Concrete. American Concrete Institute (ACI), Michigan, United States.
BS EN 12350-2. (2009). Testing fresh concrete. Slump-test. British Standards Institution, London, United Kingdom.
Cheng, Y., Huang, F., Liu, R., Hou, J., & Li, G. (2015). Test research on effects of waste ceramic polishing powder on the permeability resistance of concrete. Materials and Structures, 49(3), 729–738. doi:10.1617/s11527-015-0533-6.
Zeyad, A. M. (2020). Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete. Journal of Materials Research and Technology, 9(3), 4147–4158. doi:10.1016/j.jmrt.2020.02.042.
Kanag, S. Y., Anandan, Y. K., Vaidyanath, P., & Baskar, P. (2016). Strength properties of coated E-glass fibres in concrete. Gradjevinar, 68(9), 697–703. doi:10.14256/JCE.1335.2015.
Kiran, T. S., & Rao, K. S. (2016). Mechanical Properties of Glass Fiber Reinforced Concrete. International Journal of Civil and Structural Engineering Research, 3(2), 164–173.
Datye, P. P., & Pawar, S.S. (2015). Experimental Approach to assess the viability of Aluminium Matrix Composites in Concrete. International Journal of Innovative Research in Science, Engineering and Technology, 4(9), 9035-9038. doi:10.15680/IJIRSET.2015.0409104.
Shao, R., Wu, C., Li, J., & Liu, Z. (2022). Development of sustainable steel fibre-reinforced dry ultra-high performance concrete (DUHPC). Journal of Cleaner Production, 337, 130507. doi:10.1016/j.jclepro.2022.130507.
Liu, Z., Worley II, R., Du, F., Giles, C. D., Dewoolkar, M., Huston, D., & Tan, T. (2021). A study on avalanches of early age basalt fiber reinforced concrete beams during flexure. Journal of Cleaner Production, 279, 123695. doi:10.1016/j.jclepro.2020.123695.
Lazorenko, G., Kasprzhitskii, A., & Fini, E. H. (2022). Polyethylene terephthalate (PET) waste plastic as natural aggregate replacement in geopolymer mortar production. Journal of Cleaner Production, 375, 134083. doi:10.1016/j.jclepro.2022.134083.
Ravinder, K. (2016). Strength Characteristics of Coca-Cola Tin Waste As Fibres in Concrete. International Journal of Advanced Research Foundation, 3(2), 9–12.
Ilya, J., & Cheow Chea, C. (2017). Mechanical behaviour of fibre reinforced concrete using soft – drink can. IOP Conference Series: Materials Science and Engineering, 271, 012079. doi:10.1088/1757-899x/271/1/012079.
Parida, A., Sarangi, S., & Jayashree, B. (2017). Study the modulus elasticity of HFRC. Journal of Industrial Pollution Control, 33(1), 1209–1213.
Sagar, B., & Sivakumar, M. V. N. (2021). Performance evaluation of basalt fibre-reinforced polymer rebars in structural concrete members–a review. Innovative Infrastructure Solutions, 6, 1-18. doi:10.1007/s41062-020-00452-2.
Talib, N. A. A., Salam, F., Yusof, N. A., Alang Ahmad, S. A., & Sulaiman, Y. (2017). Optimisation of peak current of poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube using response surface methodology/central composite design. RSC Advances, 7(18), 11101–11110. doi:10.1039/c6ra26135c.
Awolusi, T. F., Oke, O. L., Akinkurolere, O. O., Sojobi, A. O., & Aluko, O. G. (2019). Performance comparison of neural network training algorithms in the modeling properties of steel fiber reinforced concrete. Heliyon, 5(1). doi:10.1016/j.heliyon.2018.e01115.
Schober, P., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763–1768. doi:10.1213/ANE.0000000000002864.
Pomerantsev, A. L., & Rodionova, O. Y. (2010). Chemometric view on "comprehensive chemometrics". Chemometrics and Intelligent Laboratory Systems, 103(1), 19-24. doi:10.1016/j.chemolab.2010.05.001.
Ghayeb, H. H., Razak, H. A., Sulong, N. H. R., Hanoon, A. N., Abutaha, F., Ibrahim, H. A., Gordan, M., & Alnahhal, M. F. (2019). Predicting the mechanical properties of concrete using intelligent techniques to reduce CO2 emissions. Materiales de Construccion, 69(334), 0465–2746. doi:10.3989/mc.2019.07018.
Chindaprasirt, P., & Rukzon, S. (2015). Strength and chloride resistance of the blended Portland cement mortar containing rice husk ash and ground river sand. Materials and Structures/Materiaux et Constructions, 48(11), 3771–3777. doi:10.1617/s11527-014-0438-9.
Lasseuguette, E., Burns, S., Simmons, D., Francis, E., Chai, H. K., Koutsos, V., & Huang, Y. (2019). Chemical, microstructural and mechanical properties of ceramic waste blended cementitious systems. Journal of Cleaner Production, 211, 1228–1238. doi:10.1016/j.jclepro.2018.11.240.
DOI: 10.28991/CEJ-2023-09-04-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Temitope Funmilayo Awolusi, Alenoghena Ekhasomhi, Oluwatobi Gbenga Aluko, Olanike Akinkurolere, Azab Marc, Ahmed Farouk Deifalla
This work is licensed under a Creative Commons Attribution 4.0 International License.