Thermal Stabilization of Permafrost Using Thermal Coils Inside Foundation Piles

Alexander Lavrik, George Buslaev, Mikhail Dvoinikov

Abstract


The article deals with the issue of thermal stabilization of soils to preserve the stability of pile foundations in permafrost conditions. The purpose of the work is to develop a technology for year-round freezing of soils by supplying coolant cooled by a refrigeration machine to thermal elements placed inside piles. In this work, the temperature regime of the system "pile foundation – soil" in the stationary formulation of the problem was simulated, and the influence of the depth of placement of thermal elements inside the piles on the soil temperature was investigated. The simulation was performed in the COMSOL software environment, taking into account the heat transfer due to thermal conduction and convection. In the presented model, a platform is fixed on piles, and a heat source is placed on the platform. It is found that an area of thawed soil has formed on the leeward side of the pile foundation. It is concluded that, under certain conditions, deep thermal elements for freezing or keeping the soil frozen should be placed at different depths. Thus, under given conditions, a greater depth of the thermal element placement in the pile, closest to the soil thawing zone, allows to reduce the surface temperature of the pile below ground level and, therefore, increase its bearing capacity. The authors also propose an original unit for soil thermostabilization based on the absorption cooling machine, which can operate at the expense of thermal energy generated by technological sources located on the platform.

 

Doi: 10.28991/CEJ-2023-09-04-013

Full Text: PDF


Keywords


Frozen Soil; Chiller; Cooling Machine; Refrigerant; Heat Exchanger; Tube; Coolant Circulation; Thawing; Ground.

References


Belsky, A. A., Glukhanich, D. Y., Carrizosa, M. J., & Starshaia, V. V. (2022). Analysis of specifications of solar photovoltaic panels. Renewable and Sustainable Energy Reviews, 159, 112239. doi:10.1016/j.rser.2022.112239.

Iakovleva, E., Guerra, D., Tcvetkov, P., & Shklyarskiy, Y. (2022). Technical and Economic Analysis of Modernization of Solar Power Plant: A Case Study from the Republic of Cuba. Sustainability (Switzerland), 14(2), 822. doi:10.3390/su14020822.

Nefedova, L. V., Degtyarev, K. S., Kiseleva, S. V., & Berezkin, M. Y. (2022). Estimation of Wind Energy Resources in Regions of Russia for Green Hydrogen Production and Reduction of CO2 Emission. IOP Conference Series: Earth and Environmental Science, 988(3), 32023. doi:10.1088/1755-1315/988/3/032023.

Litvinenko, V., Bowbriсk, I., Naumov, I., & Zaitseva, Z. (2022). Global guidelines and requirements for professional competencies of natural resource extraction engineers: Implications for ESG principles and sustainable development goals. Journal of Cleaner Production, 338. doi:10.1016/j.jclepro.2022.130530.

Zimin, R. Yu., & Kuchin, V. N. (2020). Improving the Efficiency of Oil and Gas Field Development through the Use of Alternative Energy Sources in the Arctic. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). doi:10.1109/fareastcon50210.2020.9271103.

Zhukovskiy, Y., Tsvetkov, P., Buldysko, A., Malkova, Y., Stoianova, A., & Koshenkova, A. (2021). Scenario modeling of sustainable development of energy supply in the arctic. Resources, 10(12), 124. doi:10.3390/resources10120124.

Cherepovitsyn, A. E., Tsvetkov, P. S., & Evseeva, O. O. (2021). Critical analysis of methodological approaches to assessing sustainability of arctic oil and gas projects. Journal of Mining Institute, 249(5), 463–478. doi:10.31897/PMI.2021.3.15.

Shammazov, I. A., Sidorkin, D. I., & Batyrov, А. M. (2022). Ensuring Stability of Above-Ground Main Pipelines in Areas of Continuous Permafrost. Bulletin of the Tomsk Polytechnic University Geo Assets Engineering, 333(12), 200–207. doi:10.18799/24131830/2022/12/3832. (In Russian).

Serbin, D. V., & Dmitriev, A. N. (2022). Experimental research on the thermal method of drilling by melting the well in ice mass with simultaneous controlled expansion of its diameter. Journal of Mining Institute, 257, 833–842. doi:10.31897/PMI.2022.82.

Samylovskaya, E., Makhovikov, A., Lutonin, A., Medvedev, D., & Kudryavtseva, R. E. (2022). Digital Technologies in Arctic Oil and Gas Resources Extraction: Global Trends and Russian Experience. Resources, 11(3), 29. doi:10.3390/resources11030029.

Shuvaev, A. N., Smirnov, A. P., & Kartavy, S. V. (2020). The construction of roadbeds on permafrost and in swamps from reinforced soils of increased strength. Civil Engineering Journal, 6(10), 1922–1931. doi:10.28991/cej-2020-03091592.

Koteleva, N., & Loseva, E. (2022). Development of an Algorithm for Determining Defects in Cast-in-Place Piles Based on the Data Analysis of Low Strain Integrity Testing. Applied Sciences (Switzerland), 12(20), 10636. doi:10.3390/app122010636.

Huang, J., McCartney, J. S., Perko, H., Johnson, D., Zheng, C., & Yang, Q. (2019). A novel energy pile: The thermo-syphon helical pile. Applied Thermal Engineering, 159, 113882. doi:10.1016/j.applthermaleng.2019.113882.

Xiong, Z., Chen, J., Liu, C., Li, J., & Li, W. (2022). Bridge’s Overall Structural Scheme Analysis in High Seismic Risk Permafrost Regions. Civil Engineering Journal, 8(7), 1316–1327. doi:10.28991/CEJ-2022-08-07-01.

Zhu, Y., Zhang, F., & Jia, S. (2022). Embodied energy and carbon emissions analysis of geosynthetic reinforced soil structures. Journal of Cleaner Production, 370, 133510. doi:10.1016/j.jclepro.2022.133510.

Vasiliev, G. G., Dzhaljabov, A., & Leonovich, I. (2021). Analysis of the causes of engineering structures deformations at gas industry facilities in the permafrost zone. Journal of Mining Institute, 249, 377–385. doi:10.31897/PMI.2021.3.6.

Gudmestad, O. T. (2020). Technical and economic challenges for Arctic Coastal settlements due to melting of ice and permafrost in the Arctic. IOP Conference Series: Earth and Environmental Science, 612(1), 012049. doi:10.1088/1755-1315/612/1/012049.

Holubec, I. (2008). Flat Loop Thermosyphon Foundations in Warm Permafrost. Prepared for Government of the NT Asset Management Division Public Works and Services and Canadian Change Vulnerability Assessment, Canadian Council of Professional Engineers, Canada.

Schaefer, K., Lantuit, H., Romanovsky, V., & Schuur, E. (2012). Policy implications of warming permafrost. United Nations Environmental Programme (UNEP), Nairobi, Kenya.

Fontaine, P. O., Marcotte, D., Pasquier, P., & Thibodeau, D. (2011). Modeling of horizontal geoexchange systems for building heating and permafrost stabilization. Geothermics, 40(3), 211–220. doi:10.1016/j.geothermics.2011.07.002.

Gorelik, J. B., & Khabitov, A. K. (2019). On the efficiency of adapting the thermostabilizers for building activity in permafrost. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 5(3), 25–46. doi:10.21684/2411-7978-2019-5-3-25-46. (In Russian).

Yarmak, E. (2015). Permafrost Foundations Thermally Stabilized Using Thermosyphons. OTC Arctic Technology Conference, 23 March 2015, Copenhagen, Denmark. doi:10.4043/25500-ms.

Dolgikh, G. M., & Okunev, S. N. (2015). Reliability and Effectiveness Analysis of a Temperature Stabilization System for Permafrost Soil in Building and Structure Beds. Soil Mechanics and Foundation Engineering, 52(5), 262–266. doi:10.1007/s11204-015-9338-4.

Wei, M., Guodong, C., & Qingbai, W. (2009). Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad. Cold Regions Science and Technology, 59(1), 3–11. doi:10.1016/j.coldregions.2009.07.007.

NPO (2023). The essence of the problem. NPO "Fundamentstroyarkos" LLC. Available online: https://www.npo-fsa.ru/sut-problemy (accessed on March 2023). (In Russian).

Timofeev, A. V., Piirainen, V. Y., Bazhin, V. Y., & Titov, A. B. (2021). Operational analysis and medium-term forecasting of the greenhouse gas generation intensity in the cryolithozone. Atmosphere, 12(11), 1466. doi:10.3390/atmos12111466.

Vasilenko, N.V. (2022). Electric Power Industry of Russia in the Transition to a Low-carbon Economy. Challenges and Solutions in the Digital Economy and Finance. Springer Proceedings in Business and Economics, Springer, Cham, Switzerland. doi:10.1007/978-3-031-14410-3_42.

Kong, X., Doré, G., & Calmels, F. (2019). Thermal modeling of heat balance through embankments in permafrost regions. Cold Regions Science and Technology, 158, 117–127. doi:10.1016/j.coldregions.2018.11.013.

Reimchen, D., Stanley, B., Walsh, R., Doré, G., & Fortier, D. (2010). Reducing maintenance requirements on permafrost-affected highways: permafrost test sections along the Alaska Highway, Yukon. Proceedings of the XIII International Winter Road Congress, Quebec. doi:10.13140/2.1.4777.7609.

Okorokov, N. S., Korkishko, A. N., & Korzhikova, A. P. (2020). An experimental study of a forced ventilation pile. Vestnik MGSU, 5, 665–677. doi:10.22227/1997-0935.2020.5.665-677. (In Russian).

Mu, Y., Wang, G., Yu, Q., Li, G., Ma, W., & Zhao, S. (2016). Thermal performance of a combined cooling method of thermosyphons and insulation boards for tower foundation soils along the Qinghai–Tibet Power Transmission Line. Cold Regions Science and Technology, 121, 226–236. doi:10.1016/j.coldregions.2015.06.006.

Galkin, A., & Pankov, V. Y. (2022). Thermal Protection of Roads in the Permafrost Zone. Journal of Applied Engineering Science, 20(2), 395–399. doi:10.5937/jaes0-34379.

Loktionov, E. Y., Sharaborova, E. S., & Shepitko, T. V. (2022). A sustainable concept for permafrost thermal stabilization. Sustainable Energy Technologies and Assessments, 52, 102003. doi:10.1016/j.seta.2022.102003.

Stryi-Hipp, G. (2015). Renewable Heating and Cooling: Technologies and Applications. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/C2013-0-16484-7.

Farzadi, R., & Bazargan, M. (2020). Experimental study of a diffusion absorption refrigeration cycle supplied by the exhaust waste heat of a sedan car at low engine speeds. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 56(4), 1353–1363. doi:10.1007/s00231-019-02793-w.

Arora, C. P. (2000). Refrigeration and air conditioning. Tata McGraw-Hill Education, New York, United States.

Hu, T. F., & Yue, Z. R. (2021). Potential applications of solar refrigeration systems for permafrost cooling in embankment engineering. Case Studies in Thermal Engineering, 26, 101086. doi:10.1016/j.csite.2021.101086.

Hu, T., Liu, J., Hao, Z., & Chang, J. (2020). Design and experimental study of a solar compression refrigeration apparatus (SCRA) for embankment engineering in permafrost regions. Transportation Geotechnics, 22, 100311. doi:10.1016/j.trgeo.2019.100311.

Moiseev, V. I., Vasiliev, N. K., Komarova, T. A., & Komarova, O. A. (2017). Apparatus for Strengthening Soft Water-Saturated Soils by Freezing under Engineering Objects and Structures in Cold Regions. Procedia Engineering, 189, 40–44. doi:10.1016/j.proeng.2017.05.007.

Mirmov N.I., Mirmov I.N. (2017). Absorption refrigeration machines for obtaining of low temperatures. Proceedings of BSTU. 1(2), 328–341. (In Russian).

Ketfi, O., Merzouk, M., Merzouk, N. K., & Metenani, S. El. (2015). Performance of a Single Effect Solar Absorption Cooling System (Libr-H2O). Energy Procedia, 74, 130–138. doi:10.1016/j.egypro.2015.07.534.

Buslaev, G., Tsvetkov, P., Lavrik, A., Kunshin, A., Loseva, E., & Sidorov, D. (2021). Ensuring the sustainability of arctic industrial facilities under conditions of global climate change. Resources, 10(12), 128. doi:10.3390/resources10120128.

Inzhutov, I. S., Zhadanov, V. I., Nazirov, R. A., Servatinskii, V. V., Semenov, M. Y., Amelchugov, S. P., Archipov, I. N., Goncharov, Y. M., & Chaikin, E. A. (2018). Research of permafrost soil thawing under the structural foundation platform. IOP Conference Series: Materials Science and Engineering, 456, 012046. doi:10.1088/1757-899x/456/1/012046.

Kovshov, S. V., & Tingnting, S. (2020). Application of Computer Modeling for the Accident Rate Assessment on Separate Sites of the Mohe–Daqing Oil Pipeline in Permafrost Conditions. Transportation Infrastructure Geotechnology, 7(4), 605–617. doi:10.1007/s40515-020-00109-8.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-04-013

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Alexander Lavrik, George Buslaev, Mikhail Dvoinikov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message