Reliability Assessment of Masonry Infilled RC Frame Building’s Earthquake Performance through Accidental Torsion Consideration

Dalibor Burilo, Damir Markulak, Tihomir Dokšanović, Davorin Penava


Accidental torsional behaviour induced by horizontal loading is difficult to predict, being a complex phenomenon governed by many variables. This problem gains an additional dimension of complexity when nonlinear responses with imperfections need to be considered. Therefore, evaluation and understanding the influence of accidental torsion are fundamental in seismic reliability estimation. This study offers vital insights based on the results of a 1/2.5 scale three-story masonry infilled reinforced concrete frame building’s test on a shaking table. The building was tested under ten consecutive ground motions with increasing ag/g, recorded at Herzeg Novi station during the 1979-M6.9 Montenegro earthquake. The accidental eccentricity, considered a random variable, resulted from unsymmetrical masonry infill wall damage in an otherwise regular building. Its effect, in relation to that of other random (design) variables, was evaluated utilising weight factors and, in addition, assessed through various building code provisions and state-of-the-art research findings. The analysis revealed that the accidental eccentricity, as compared to other random variables considered, could, under certain conditions, reach values higher than those prescribed by the building codes. This unacceptable seismic reliability clearly warns that accidental torsion of masonry-infilled reinforced concrete frames in in-situ conditions must be considered even in regular buildings.


Doi: 10.28991/CEJ-2023-09-02-017

Full Text: PDF


Earthquake Behavior; Masonry Infill Wall; Reinforced Concrete Frame; Accidental Torsion; Reliability Analysis.


Anagnostopoulos, S. A., Kyrkos, M. T., & Stathopoulos, K. G. (2015). Earthquake induced torsion in buildings: Critical review and state of the art. Earthquake and Structures, 8(2), 305–377. doi:10.12989/eas.2015.8.2.305.

De Stefano, M., & Pintucchi, B. (2008). A review of research on seismic behaviour of irregular building structures since 2002. Bulletin of Earthquake Engineering, 6(2), 285–308. doi:10.1007/s10518-007-9052-3.

Anagnostopoulos, S. A., Alexopoulou, C., & Stathopoulos, K. G. (2010). An answer to an important controversy and the need for caution when using simple models to predict inelastic earthquake response of buildings with torsion. Earthquake Engineering and Structural Dynamics, 39(5), 521–540. doi:10.1002/eqe.957.

Stathi, C. G., Bakas, N. P., Lagaros, N. D., & Papadrakakis, M. (2015). Ratio of Torsion (ROT): An index for assessing the global induced torsion in plan irregular buildings. Earthquake and Structures, 9(1), 145–171. doi:10.12989/eas.2015.9.1.145.

Georgoussis, G. K. (2009). An alternative approach for assessing eccentricities in asymmetric multistory buildings. 2. Inelastic systems. The Structural Design of Tall and Special Buildings, 18(1), 81–103. doi:10.1002/tal.402.

Goel, R. K. (2000). Seismic behaviour of asymmetric buildings with supplemental damping. Earthquake Engineering and Structural Dynamics, 29(4), 461–480. doi:10.1002/(SICI)1096-9845(200004)29:4<461::AID-EQE917>3.0.CO;2-6.

Lin, J. L., & Tsai, K. C. (2007). Simplified seismic analysis of one-way asymmetric elastic systems with supplemental damping. Earthquake Engineering & Structural Dynamics, 36(6), 783–800. doi:10.1002/eqe.653.

Chandler, A. M., & Hutchinson, G. L. (1986). Torsional coupling effects in the earthquake response of asymmetric buildings. Engineering Structures, 8(4), 222–236. doi:10.1016/0141-0296(86)90030-1.

Goel, R. K. (1997). Seismic Response of Asymmetric Systems: Energy-Based Approach. Journal of Structural Engineering, 123(11), 1444–1453. doi:10.1061/(asce)0733-9445(1997)123:11(1444).

Heredia-Zavoni, E., & Barranco, F. (1996). Torsion in Symmetric Structures due to Ground-Motion Spatial Variation. Journal of Engineering Mechanics, 122(9), 834–843. doi:10.1061/(asce)0733-9399(1996)122:9(834).

de la Llera, J. C., & Chopra, A. K. (1994). Using accidental eccentricity in code‐specified static and dynamic analyses of buildings. Earthquake Engineering & Structural Dynamics, 23(9), 947–967. doi:10.1002/eqe.4290230903.

Sigmund, V., & Penava, D. (2014). Influence of openings, with and without confinement, on cyclic response of infilled R-C frames - An experimental study. Journal of Earthquake Engineering, 18(1), 113–146. doi:10.1080/13632469.2013.817362.

Penava, D., Sarhosis, V., Kožar, I., & Guljaš, I. (2018). Contribution of RC columns and masonry wall to the shear resistance of masonry infilled RC frames containing different in size window and door openings. Engineering Structures, 172, 105–130. doi:10.1016/j.engstruct.2018.06.007.

Markulak, D., Radić, I., & Sigmund, V. (2013). Cyclic testing of single bay steel frames with various types of masonry infill. Engineering Structures, 51, 267–277. doi:10.1016/j.engstruct.2013.01.026.

Markulak, D., Dokšanović, T., Radić, I., & Miličević, I. (2018). Structurally and environmentally favorable masonry units for infilled frames. Engineering Structures, 175, 753–764. doi:10.1016/j.engstruct.2018.08.073.

Markulak, D., Dokšanović, T., Radić, I., & Zovkić, J. (2020). Behaviour of steel frames infilled with environmentally and structurally favourable masonry units. Engineering Structures, 204(109909). doi:10.1016/j.engstruct.2019.109909.

Gazić, G., Dokšanović, T., & Draganić, H. (2018). Evaluation of out-of-plane deformation of masonry infill walls due to in-plane loading by digital image correlation. Materials Today: Proceedings, 5(13), 26661–26666. doi:10.1016/j.matpr.2018.08.132.

Anić, F., Penava, D., Guljaš, I., Sarhosis, V., & Abrahamczyk, L. (2021). Out-of-plane cyclic response of masonry infilled RC frames: An experimental study. Engineering Structures, 238(112258). doi:10.1016/j.engstruct.2021.112258.

Anić, F., Penava, D., Abrahamczyk, L., & Sarhosis, V. (2020). A review of experimental and analytical studies on the out-of-plane behaviour of masonry infilled frames. Bulletin of Earthquake Engineering, 18(5), 2191–2246. doi:10.1007/s10518-019-00771-5.

EN 1998-1. (2005). Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardization (CEN). Brussels, Belgium.

ASCE/SEI 7-22. (2021). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers (ASCE), Reston, United States.

NZS 1170.5:2004. (2004). Structural design actions - Part 5: Earthquake actions - New Zealand. New Zealand Standard (NZS), Wellington, New Zealand.

National Building Code of Canada: 2020. (2022). Canadian Commission on Building and Fire Codes National Research Council of Canada; Ottawa, Canada.

Tena-Colunga, A., Mena-Hernandez, U., Pérez-Rocha, L. E., Avilés, J., Ordaz, M., & Vilar, J. I. (2009). Updated seismic design guidelines for model building code of Mexico. Earthquake Spectra, 25(4), 869–898. doi:10.1193/1.3240413.

Mohamed, O. A., & Mehana, M. S. (2020). Assessment of accidental torsion in building structures using static and dynamic analysis procedures. Applied Sciences (Switzerland), 10(16), 5509. doi:10.3390/app10165509.

Fronteddu, P. G., Léger, P., & Tremblay, R. (2019). Consideration of Accidental Torsion in Seismic Design of Buildings According to NBCC. 12th Canadian Conference on Earthquake Engineering, 17-20 June, 2019, Quebec, Canada.

De-la-Colina, J., Valdés-González, J., & Manzanarez Morones, F. (2021). Accidental torsion within the frame of nonlinear dynamic analysis using code accidental eccentricities and Monte Carlo simulations. Engineering Structures, 248(113196). doi:10.1016/j.engstruct.2021.113196.

Lin, J. L., Wang, W. C., & Tsai, K. C. (2016). Suitability of using the torsional amplification factor to amplify accidental torsion. Engineering Structures, 127, 1–17. doi:10.1016/j.engstruct.2016.08.042.

Sezen, H., Whittaker, A. S., Elwood, K. J., & Mosalam, K. M. (2003). Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey. Engineering Structures, 25(1), 103–114. doi:10.1016/S0141-0296(02)00121-9.

Abrahamczyk, L., Penava, D., Markušić, S., Stanko, D., Luqman Hasan, P., Haweyou, M., & Schwarz, J. (2022). Die Magnitude 6,4 – Erdbeben in Albanien und Kroatien – Ingenieuranalyse der Erdbebenschäden und Erfahrungswerte für die Baunormung. Bautechnik, 99(1), 18–30. doi:10.1002/bate.202100070.

Hassan, A. F., & Sozen, M. A. (1997). Seismic vulnerability assessment of low-rise buildings in regions with infrequent earthquakes. ACI Structural Journal, 94(1), 31–39. doi:10.14359/458.

Henderson, R. C., Fricke, K. E., Jones, W. D., Beavers, J. E., & Bennett, R. M. (2003). Summary of a Large- and Small-Scale Unreinforced Masonry Infill Test Program. Journal of Structural Engineering, 129(12), 1667–1675. doi:10.1061/(asce)0733-9445(2003)129:12(1667).

Negro, P., & Colombo, A. (1997). Irregularities induced by nonstructural masonry panels in framed buildings. Engineering Structures, 19(7), 576–585. doi:10.1016/S0141-0296(96)00115-0.

Hashemi, A., & Mosalam, K. M. (2006). Shake-table experiment on reinforced concrete structure containing masonry infill wall. Earthquake Engineering and Structural Dynamics, 35(14), 1827–1852. doi:10.1002/eqe.612.

Kohiyama, M., & Yokoyama, H. (2018). Torsional response induced by lateral displacement and inertial force. Frontiers in Built Environment, 4. doi:10.3389/fbuil.2018.00038.

De-la-Colina, J., & Valdés-González, J. (2021). New Proposal to Incorporate Seismic Accidental Torsion in the Design of Buildings. International Journal of Civil Engineering, 19(1), 1–16. doi:10.1007/s40999-020-00556-x.

Khatiwada, P., & Lumantarna, E. (2021). Simplified Method of Determining Torsional Stability of the Multi-Storey Reinforced Concrete Buildings. CivilEng, 2(2), 290–308. doi:10.3390/civileng2020016.

Pekau, O. A., & Guimond, R. (1990). Accidental torsion in yielding symmetric structures. Engineering Structures, 12(2), 98–105. doi:10.1016/0141-0296(90)90014-J.

Pekau, O. A., & Syamal, P. K. (1985). Torsional instability in hysteretic structures. Journal of engineering mechanics, 111(4), 512-528. doi:10.1061/(ASCE)0733-9399(1985)111:4(512).

Tso, W. K. (1974). Induced torsional oscillations in symmetrical structures. Earthquake Engineering & Structural Dynamics, 3(4), 337–346. doi:10.1002/eqe.4290030404.

Antonelli, R. G., Meyer, K. J., & Oppenheim, I. J. (1981). Torsional instability in structures. Earthquake Engineering & Structural Dynamics, 9(3), 221–237. doi:10.1002/eqe.4290090304.

Flores, F., Charney, F. A., & Lopez-Garcia, D. (2018). The influence of accidental torsion on the inelastic dynamic response of buildings during earthquakes. Earthquake Spectra, 34(1), 21–53. doi:10.1193/100516EQS169M.

Lin, W. H., Chopra, A. K., & Llera, J. C. D. L. (2001). Accidental torsion in buildings: analysis versus earthquake motions. Journal of Structural Engineering, 127(5), 475-481. doi:10.1061/(asce)0733-9445(2001)127:5(475).

Avilés, J., & Suárez, M. (2006). Natural and accidental torsion in one-storey structures on elastic foundation under non-vertically incident SH-waves. Earthquake Engineering and Structural Dynamics, 35(7), 829–850. doi:10.1002/eqe.558.

Chandler, A. M., Correnza, J. C., & Hutchinson, G. L. (1995). Influence of accidental eccentricity on inelastic seismic torsional effects in buildings. Engineering Structures, 17(3), 167–178. doi:10.1016/0141-0296(94)00003-C.

Debock, D. J., Liel, A. B., Haselton, C. B., Hooper, J. D., & Henige, R. A. (2014). Importance of seismic design accidental torsion requirements for building collapse capacity. Earthquake Engineering and Structural Dynamics, 43(6), 831–850. doi:10.1002/eqe.2375.

Wong, C. M., & Tso, W. K. (1994). Inelastic seismic response of torsionally unbalanced systems designed using elastic dynamic analysis. Earthquake Engineering & Structural Dynamics, 23(7), 777–798. doi:10.1002/eqe.4290230707.

Guéguen, P., Guattari, F., Aubert, C., & Laudat, T. (2020). Comparing Direct Observation of Torsion with Array-Derived Rotation in Civil Engineering Structures. Sensors, 21(1), 142. doi:10.3390/s21010142.

Guéguen, P., & Astorga, A. (2021). The Torsional Response of Civil Engineering Structures during Earthquake from an Observational Point of View. Sensors, 21(2), 342. doi:10.3390/s21020342.

De la Llera, J. C., & Chopra, A. K. (1995). Estimation of Accidental Torsion Effects for Seismic Design of Buildings. Journal of Structural Engineering, 121(1), 102–114. doi:10.1061/(asce)0733-9445(1995)121:1(102).

Chang, H. Y., Lin, C. C. J., Lin, K. C., & Chen, J. Y. (2009). Role of accidental torsion in seismic reliability assessment for steel buildings. Steel and Composite Structures, 9(5), 457–471. doi:10.12989/scs.2009.9.5.457.

Chang, H. Y., & Chiu, C. K. (2019). Uncertainty assessment of field weld connections and the related effects on service life of steel buildings. Structure and Infrastructure Engineering, 15(10), 1333-1345. doi:10.1080/15732479.2019.1621906.

Mortezaei, A., & Mohsenian, V. (2022). Reliability-Based Seismic Assessment of Multi-Story Box System Buildings under the Accidental Torsion. Journal of Earthquake Engineering, 26(2), 674–697. doi:10.1080/13632469.2019.1692738.

Lin, J. L., Wang, W. C., & Tsai, K. C. (2015). Evaluating the reliability of using the deflection amplification factor to estimate design displacements with accidental torsion effects. Earthquake and Structures, 8(2), 443–462. doi:10.12989/eas.2015.8.2.443.

Guljaš, I., Penava, D., Laughery, L., & Pujol, S. (2020). Dynamic Tests of a Large-Scale Three-Story RC Structure with Masonry Infill Walls. Journal of Earthquake Engineering, 24(11), 1675–1703. doi:10.1080/13632469.2018.1475313.

Sorić Z. (2016). Masonry constructions. Strucna knjizara, Zagreb, Croatia. (In Croatian).

Vrouwenvelder, T. (1997). The JCSS probabilistic model code. Structural Safety, 19(3), 245–251. doi:10.1016/S0167-4730(97)00008-8.

Penava, D., Arciniega Larrea, D. A., Anić, F., & Abrahamczyk, L. (2020). Architectural and engineering design criteria for earthquake resistant masonry infilled RC frames containing openings. Environmental Engineering, 7(1), 11–17. doi:10.37023/ee.7.1.2.

Anić, F., Penava, D., Varevac, D., & Sarhosis, V. (2019). Influence of clay block masonry properties on the out-of-plane behaviour of infilled RC frames. Tehnicki Vjesnik, 26(3), 831–836. doi:10.17559/TV-20180222140915.

Asteris, P. G. (2003). Lateral Stiffness of Brick Masonry Infilled Plane Frames. Journal of Structural Engineering, 129(8), 1071–1079. doi:10.1061/(asce)0733-9445(2003)129:8(1071).

Radić, I., Markulak, D., & Sigmund, V. (2016). Controlled seismic behaviour of masonry-infilled steel frames. Journal of the Croatian Association of Civil Engineers, 68(11), 883–893. doi:10.14256/jce.1673.2016.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-02-017


  • There are currently no refbacks.

Copyright (c) 2023 Dalibor Burilo, Damir Markulak, Tihomir Dokšanović, Davorin Penava

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.