Simulation of Hybrid Mesh Turbomachinery using CFD and Additive Technologies

Yuri A. Sazonov, Mikhail A. Mokhov, Inna V. Gryaznova, Victoria V. Voronova, Khoren A. Tumanyan, Mikhail A. Frankov, Nikolay N. Balaka


This paper develops schematics and evaluates the performance of hybrid mesh turbomachinery at the patenting stage of individual technical solutions. This type of turbomachine uses reduced-sized blades and also forms flow channels with a mesh structure between the blades. The research methods are based on simulations using computational fluid dynamics (CFD) and additive technologies. An intermediate conclusion is that a new scientific direction for investigating and creating hybrid mesh turbomachinery equipped with mesh jet control systems was formed to develop Euler's ideas. This paper describes new possibilities for the simultaneous implementation of two workflows in a single impeller: 1) Turbine workflow, and 2) Compressor workflow. Calculation methods showed possible improvements in the performance of the new turbomachines. This paper considers options for mesh turbomachine operation in the two-stage gas generator mode with partial involvement of atmospheric air in the workflow. Preliminary calculations based on examples show that it is possible to expect a two- to four-times increase in thrust when using hybrid mesh turbomachines. Ongoing studies mainly focus on developing multi-mode turbomachinery that works in complicated conditions, such as offshore oil and gas fields, but some research results are applicable in other industries, for example, in developing hybrid propulsion systems or propulsors.


Doi: 10.28991/CEJ-2022-08-12-011

Full Text: PDF


Mesh Turbomachine; Turbine; Compressor; Research; Simulation; Patenting; Computational Fluid Dynamics.


Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Development and prototyping of jet systems for advanced turbomachinery with mesh rotor. Emerging Science Journal, 5(5), 775–801. doi:10.28991/esj-2021-01311.

Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Mulenko, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Prototyping and study of mesh turbomachinery based on the Euler turbine. Energies, 14(17), 5292. doi:10.3390/en14175292.

Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Mulenko, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Prototyping and study of jet systems for developing mesh turbomachines. International Review of Mechanical Engineering, 15(7), 335–345. doi:10.15866/ireme.v15i7.21163.

Zeng, C., Xiao, Y., Luo, Y., Zhang, J., Wang, Z., Fan, H., & Ahn, S. H. (2018). Hydraulic performance prediction of a prototype four-nozzle Pelton turbine by entire flow path simulation. Renewable Energy, 125, 270-282. doi:10.1016/j.renene.2018.02.075.

Sazonov, Y. A., Mokhov, M. A., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2020). Prototyping mesh turbine with the jet control system. Periódico Tchê Química, 17, 1160-117.

Sazonov, Y. A., Mokhov, M. A., Tumanyan, K.A., Voronova, V. V., & Balaka, N. N. (2022). The utility model patent of the RF No. 213280 Useful model patent of the Russian Federation No 213280. Moscow, Russia. (In Russian).

Yan, J., Zhang, C., Huo, S., Chai, X., Liu, Z., & Yan, K. (2021). Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate. Chinese Journal of Aeronautics, 34(8), 245–257. doi:10.1016/j.cja.2020.09.026.

Di Caprio, F., Acanfora, V., Franchitti, S., Sellitto, A., & Riccio, A. (2019). Hybrid Metal/Composite Lattice Structures: Design for Additive Manufacturing. Aerospace, 6(6), 71. doi:10.3390/aerospace6060071.

Boccini, E., Furferi, R., Governi, L., Meli, E., Ridolfi, A., Rindi, A., & Volpe, Y. (2019). Toward the integration of lattice structure-based topology optimization and additive manufacturing for the design of turbomachinery components. Advances in Mechanical Engineering, 11(8). doi:10.1177/1687814019859789.

Zhang, Y., Li, F., & Jia, D. (2020). Lightweight design and static analysis of lattice compressor impeller. Scientific Reports, 10(1). doi:10.1038/s41598-020-75330-z.

Magerramova, L., Volkov, M., Afonin, A., Svinareva, M., & Kalinin, D. (2018). Application of light lattice structures for gas turbine engine fan blades. Proccedings of the 31st Congress of the International Council of the Aeronautical Sciences, 9-14 September, 2018, Belo Horizonte, Brazil.

Sajan, K. C., & Gautam, D. (2021). Progress in sustainable structural engineering: a review. Innovative Infrastructure Solutions, 6(2), 1-23. doi:10.1007/s41062-020-00419-3.

Schülein, E., & Guyot, D. (2007). Wave Drag Reduction Approach for Lattice Wings at High Speeds. In New Results in Numerical and Experimental Fluid Mechanics VI, 332-339. Springer, Berlin, Germany. doi:10.1007/978-3-540-74460-3_41.

Surawski, N. C., Macdonald, L. M., Baldock, J. A., Sullivan, A. L., Roxburgh, S. H., & Polglase, P. J. (2020). Exploring how fire spread mode shapes the composition of pyrogenic carbon from burning forest litter fuels in a combustion wind tunnel. Science of the total environment, 698, 134306.

Ma, T., Wang, X., Qiao, N., Zhang, Z., Fu, J., & Bao, M. (2022). A Conceptual Design and Optimization Approach for Distributed Electric Propulsion eVTOL Aircraft Based on Ducted-Fan Wing Unit. Aerospace, 9(11), 690. doi:10.3390/aerospace9110690.

Kazemi, E., & Luo, M. (2022). A comparative study on the accuracy and conservation properties of the SPH method for fluid flow interaction with porous media. Advances in Water Resources, 165, 104220. doi:10.1016/j.advwatres.2022.104220.

Xue, Y., Wang, L., & Fu, S. (2018). Detached-eddy simulation of supersonic flow past a spike-tipped blunt nose. Chinese Journal of Aeronautics, 31(9), 1815–1821. doi:10.1016/j.cja.2018.06.016.

Anbu Serene Raj, C., Narasimhavaradhan, M., Vaishnavi, N., Arunvinthan, S., Al Arjani, A., & Nadaraja Pillai, S. (2020). Aerodynamics of ducted re-entry vehicles. Chinese Journal of Aeronautics, 33(7), 1837–1849. doi:10.1016/j.cja.2020.02.019.

Kini, C. R., Purohit, S., Bhagat, K. K., & Shenoy B., S. (2019). Effect of helix angle and cross section of helicoidal ducts in gas turbine blade cooling. International Review of Mechanical Engineering, 13(2), 87–96. doi:10.15866/ireme.v13i2.14942.

Kini, C. R., Purohit, S., Bhagat, K. K., & Satish Shenoy, B. (2018). Heat transfer augmentation and cooling of a turbine blade using an innovative converging-diverging ducts - A CFD study. International Review of Mechanical Engineering, 12(7), 570–579. doi:10.15866/ireme.v12i7.15125.

Yeranee, K., & RAO, Y. (2021). A review of recent studies on rotating internal cooling for gas turbine blades. Chinese Journal of Aeronautics, 34(7), 85–113. doi:10.1016/j.cja.2020.12.035.

Deng, Q., Wang, H., He, W., & Feng, Z. (2022). Cooling Characteristic of a Wall Jet for Suppressing Crossflow Effect under Conjugate Heat Transfer Condition. Aerospace, 9(1). doi:10.3390/aerospace9010029.

Kopiev, V. F., Belyaev, I. V., Dunayevsky, A. I., Pukhov, A. A., & Trofimovskiy, I. L. (2022). The Patent of the Russian Federation No. 2776193. Supersonic Aircraft, Bulletin 20, Moscow, Russia. (In Russian).

Ji, Z., Zhang, H., & Wang, B. (2021). Thermodynamic performance analysis of the rotating detonative airbreathing combined cycle engine. Aerospace Science and Technology, 113, 106694. doi:10.1016/j.ast.2021.106694.

Donateo, T., Spada Chiodo, L., Ficarella, A., & Lunaro, A. (2022). Improving the Dynamic Behavior of a Hybrid Electric Rotorcraft for Urban Air Mobility. Energies, 15(20), 7598. doi:10.3390/en15207598.

Liu, B., Gao, Y., Gao, L., Zhang, J., Zhu, Y., Zang, X., & Zhao, J. (2022). Design and Experimental Study of a Turbojet VTOL Aircraft with One-Dimensional Thrust Vectoring Nozzles. Aerospace, 9(11), 678. doi:10.3390/aerospace9110678.

Xia, J., & Zhou, Z. (2022). Model Predictive Control Based on ILQR for Tilt-Propulsion UAV. Aerospace, 9(11), 688. doi:10.3390/aerospace9110688.

Wang, R., Zhang, G., Ying, P., & Ma, X. (2022). Effects of Key Parameters on Airfoil Aerodynamics Using Co-Flow Jet Active Flow Control. Aerospace, 9(11), 649. doi:10.3390/aerospace9110649.

Decaix, J., & Münch-Alligné, C. (2022). Geometry, Mesh and Numerical Scheme Influencing the Simulation of a Pelton Jet with the OpenFOAM Toolbox. Energies, 15(19), 7451. doi:10.3390/en15197451.

Asgarnejad, S., Kouhikamali, R., & Hassani, M. (2022). Triple-Nozzle Thermo-Compressor: Geometrical Investigation and Comparison with Single-Nozzle Thermo-Compressor. Journal of Applied Fluid Mechanics, 15(6), 1693–1702. doi:10.47176/jafm.15.06.1316.

Seitz, A., Nickl, M., Troeltsch, F., & Ebner, K. (2022). Initial Assessment of a Fuel Cell—Gas Turbine Hybrid Propulsion Concept. Aerospace, 9(2). doi:10.3390/aerospace9020068.

Zhou, S., Ma, H., Ma, Y., Zhou, C., & Hu, N. (2021). Experimental investigation on detonation wave propagation mode in the start-up process of rotating detonation turbine engine. Aerospace Science and Technology, 111, 106559 10 1016 2021 106559. doi:10.1016/j.ast.2021.106559.

Sazonov, Y. A. (2012). Fundamentals of calculation and design of pump-ejector installations. SUE “Oil and Gas Publishing House” of Gubkin University: Moscow, Russia.

Sazonov, Y., Mokhov, M., Tumanyan, K., Frankov, M., Voronova, V., & Balaka, N. Patent for utility model of the Russian Federation No. 214113. Jet Installation. Application, 2022116651, Moscow, Russia. (In Russian).

Farassat, F., & Brentner, K. S. (1998). The acoustic analogy and the prediction of the noise of rotating blades. Theoretical and computational fluid dynamics, 10(1), 155-170. doi:10.1007/s001620050056.

Sultanian, B. K. (2019). Logan's Turbomachinery: Flowpath Design and Performance Fundamentals. CRC Press, Florida, United States. doi:10.1201/9780203911600.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-12-011


  • There are currently no refbacks.

Copyright (c) 2022 Yuri Apollonievich Sazonov, Mikhail Albertovich Mokhov, Inna Vladimirovna Gryaznova, Victoria Vasilievna Voronova, Khoren Arturovich Tumanyan, Mikhail Alexandrovich Frankov, Nikolay Nikolaevich Balaka

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.