Impact of Drought on the Life Cycle of Barge Transport

Breno Tostes de Gomes Garcia, Alexandre Simas de Medeiros, Filipe Almeida Corrêa do Nascimento, Marcelino Aurélio Vieira da Silva


This paper aims to analyze the impact of drought on the life cycle of barge transportation. The LCA method was used to quantify the environmental impact of barge transportation services on the Madeira River/Brazil: Transportation Operation, Barge Fleet, and Waterway Infrastructure. A model for barge convoy formation was developed as a function of river water level variation. From this, the transport operation was simulated, considering the loading of grains from the Madeira River in 2021, as well as the respective fuel consumption and CO2Eq emissions. The results indicate that barge transportation is more harmful to the environment during drought, since only a convoy of nine barges is allowed to navigate, and its energy efficiency is compromised due to the longer travel time and lower loading capacity in one trip. The intense use of this barge convoy implied an increase of 22.25% in CO2Eqemissions when compared to the full river.


Doi: 10.28991/CEJ-2022-08-12-02

Full Text: PDF


Barge; Drought Impacts; Life Cycle Assessment (LCA); External Costs; Madeira River.


Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., … Malley, J. (2022). IPCC, 2022: Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, United States. doi:10.1017/9781009157926.001.

Donato, M., Gouveia, B. G., de Medeiros, A. S., da Silva, M. A. V., & Oda, S. (2022). Mechanical Analysis of Subgrades of Road Pavements in Life Cycle Assessment. Civil Engineering Journal (Iran), 8(7), 1492–1506. doi:10.28991/CEJ-2022-08-07-012.

USDA (2022). United States Department of Agriculture-Foreign Agricultural Service, Washington, United States. Available online: (accessed on August 2022).

Garcia, B. T. de G., Lopes, D. M. M., Junior, I. C. L., Amorim, J. C. C., da Silva, M. A. V., & Guimarães, V. de A. (2019). Analysis of the performance of transporting soybeans from Mato Grosso for export: A case study of the Tapajós-Teles Pires Waterway. Sustainability (Switzerland), 11(21), 1–26. doi:10.3390/su11216124.

ANTAQ (2022). Brazil Estatístico Aquaviário. Available online: painel%5Cantaq - anuário 2014 - v0.9.3.qvw〈=pt-BR&host=QVS%40graneleiro&anonymous=true (accessed on May 2022).

Malta Lessa, M. Q., Goncalves Lira, A., P., Melro Fortes, M. F., Rocha de Barros, C., A., Drummond, H., de Souza Castro, L., Dias Batista, D. A., Oliviera Campos, L.O., & Lopes, D. R. (2017). Strategic Logistic Corridors/Volume Ι-Soybean and corn complex. Ministry of Transport, Ports and Civil Aviation, Brasília, Brazil. (In Portuguese)

Andr eacute a, L. R. de O., & Lucas, de O. M. C. (2016). Evaluating the logistics performance of Brazils corn exports: A proposal of indicators. African Journal of Agricultural Research, 11(8), 693–700. doi:10.5897/ajar2015.10653.

Barros, B. R. C. de, Carvalho, E. B. de, & Brasil Junior, A. C. P. (2022). Inland waterway transport and the 2030 agenda: Taxonomy of sustainability issues. Cleaner Engineering and Technology, 8, 8. doi:10.1016/j.clet.2022.100462.

Huang, H., Zhou, C., Xiao, C., Huang, L., Wen, Y., Wang, J., & Peng, X. (2020). Effect of seasonal flow field on inland ship emission assessment: A case study of ferry. Sustainability (Switzerland), 12(18). doi:10.3390/SU12187484.

Kievits, S. (2019). A framework for the impact assessment of low discharges on the performance of inland waterway transport. Master Thesis, TU Delft Civil Engineering and Geosciences, TU Delft Hydraulic Engineering, Delft, Netherlands.

Brazilian Navy (2018). Brazil Rules and Procedures of the Western Amazon River Captaincy, Brazil. (In Portuguese).

ISO 14040. (2006). Environmental management-Life cycle assessment-Principles and framework. International organization for Standardization (ISO), Geneva, Switzerland.

Spielmann, M., & Scholz, R. W. (2005). Life cycle inventories of transport services: Background data for freight transport. International Journal of Life Cycle Assessment, 10(1), 85–94. doi:10.1065/lca2004.10.181.10.

van Lier, T., & Macharis, C. (2014). Assessing the environmental impact of inland waterway transport using a life-cycle assessment approach: The case of Flanders. Research in Transportation Business and Management, 12, 29–40. doi:10.1016/j.rtbm.2014.08.003.

Bates, M. E., Fox-Lent, C., Seymour, L., Wender, B. A., & Linkov, I. (2015). Life cycle assessment for dredged sediment placement strategies. Science of the Total Environment, 511, 309–318. doi:10.1016/j.scitotenv.2014.11.003.

Duan, H., Hu, M., Zhang, Y., Wang, J., Jiang, W., Huang, Q., & Li, J. (2015). Quantification of carbon emissions of the transport service sector in China by using streamlined life cycle assessment. Journal of Cleaner Production, 95, 109–116. doi:10.1016/j.jclepro.2015.02.029.

Merchan, A. L., Léonard, A., Limbourg, S., & Mostert, M. (2019). Life cycle externalities versus external costs: The case of inland freight transport in Belgium. Transportation Research Part D: Transport and Environment, 67, 576–595. doi:10.1016/j.trd.2019.01.017.

Perčić, M., Vladimir, N., & Fan, A. (2021). Techno-economic assessment of alternative marine fuels for inland shipping in Croatia. Renewable and Sustainable Energy Reviews, 148, 111363. doi:10.1016/j.rser.2021.111363.

Fan, A., Wang, J., He, Y., Perčić, M., Vladimir, N., & Yang, L. (2021). Decarbonising inland ship power system: Alternative solution and assessment method. Energy, 226, 226. doi:10.1016/

Perčić, M., Vladimir, N., & Koričan, M. (2021). Electrification of inland waterway ships considering power system lifetime emissions and costs. Energies, 14(21). doi:10.3390/en14217046.

Wang, H., Boulougouris, E., Theotokatos, G., Zhou, P., Priftis, A., & Shi, G. (2021). Life cycle analysis and cost assessment of a battery powered ferry. Ocean Engineering, 241, 110029. doi:10.1016/j.oceaneng.2021.110029.

Fox-Lent, C., Bates, M., & Kurth, M. (2019). Basics of life-cycle assessment for navigation. Engineer Research and Development Center (U.S.), Mississippi, United States. doi:10.21079/11681/34856.

Goedkoop, M., Oele, M., Leijting, J., Ponsioen, T., & Meijer, E. (2016). Introduction to LCA with SimaPro. PRé. Available online: (accessed on August 2022).

Hauschild, M.Z. (2018). Introduction to LCA Methodology. Life Cycle Assessment. Springer, Cham, Switzerland. doi:10.1007/978-3-319-56475-3_6.

Mio, A., Fermeglia, M., & Favi, C. (2022). A critical review and normalization of the life cycle assessment outcomes in the naval sector. Articles description. Journal of Cleaner Production, 133476. doi:10.1016/j.jclepro.2022.133476.

Yasin, S., Hussain, M., Zheng, Q., & Song, Y. (2022). Thermo-soil weathering and life cycle assessment of carbon black, silica and cellulose nano-crystal filled rubber nano-composites. Science of the Total Environment, 835, 155521. doi:10.1016/j.scitotenv.2022.155521.

Rosenbaum, R. K., Hauschild, M. Z., Boulay, A. M., Fantke, P., Laurent, A., Núñez, M., & Vieira, M. (2018). Life cycle impact assessment. Life cycle assessment. Springer, Cham, Switzerland. doi:10.1007/978-3-319-56475-3_10.

Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2), 138–147. doi:10.1007/s11367-016-1246-y.

Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., …, van der Ven, B.L., & Weidema, B.P. (2004). Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards. Kluwer Academic Publishers: Dordrecht, Netherlands.

PRé Sustainability. (2020). Simapro Database Manual. California, United States. Available online: (accessed on June 2022).

Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., ..., C. von, Zwickel, T., &, Minx, J.C. (2015). IPCC Climate Change 2014: Mitigation of Climate Change; Cambridge University Press, New York, United States. Available online: (accessed on May 2022).

Corum, Z.P., Creech, C., & Amorim, R.S. (2019). Navigation & Ecological Implications for Management of Large Wood on the Madeira “Wood” River, Amazonas Basins, Brazil. Proceedings of the SEDHYD 2019 Conference on Sedimentation and Hydrologic ModelingReno (Nevada), United States.

Brazil Hidroweb (2022). Historical Series of Seasons. Available online: (accessed on May 2022).

INECO (2014). Translation: Report 9 - Volume 3: Justification Report; Federal District, Brazil.

Creech, C., Amorim, R. S., Castañon, A. N. A. O., Gibson, S., Veatch, W., & Lauth, T. (2018). A planning framework for improving reliability of inland navigation on the Madeira River in Brazil. Proceedings of the PIANC-World Congress Panama City, Panama City, Panama.

INECO. (2014). Report 1: Results of Phase I - Collection of Information; Distrito Federal, Brazil.

INECO (2015). Report 3: Results of Phase III - Case Study; EPL - Empresa de Planejamento e Logística S.A.: Distrito Federal, Brazil.

Department for Business, Energy and Industrial Strategy. (DBEIS). (2021). UK Government GHG Conversion Factors for Company Reporting. UK Government: London, United Kingdom.

Spielmann, M., Bauer, C., Dones, R., & Tuchschmid, M. (2007). Transport services: Ecoinvent Report No. 14. Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-12-02


  • There are currently no refbacks.

Copyright (c) 2022 Breno Tostes de Gomes Garcia, Alexandre Simas de Medeiros, Filipe Almeida Corrêa do Nascimento, Marcelino Aurélio Vieira da Silva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.