Sustainability Performance of Voided Concrete Slab Using Waste Plastic Bottles

Donald Kwabena Dadzie, A. K. Kaliluthin


The present study is aimed at investigating the cost assessment of incorporating waste plastic bottles in the manufacture of voided concrete slabs; assessing the depth ratio vis-à-vis the cost reduction of incorporating waste plastic bottles in the manufacture of voided concrete slabs; assessing the energy consumption and CO2 emission obtained by incorporating waste plastic bottles in the manufacture of voided concrete slabs; and evaluating the impact of the depth ratio on embodied energy consumption and CO2 emission. The study was conducted on five types of slab specimens made: (1) conventional solid slab specimens; (2) slab specimens incorporated with 5% air-filled plastic bottles; and (3) slab specimens incorporated with 10% air-filled plastic bottles. Slab specimens of size 1000×1000×150 mm thick incorporated with 0, 5, and 10% waste plastic bottles were considered for the analysis of sustainability with respect to cost, energy, and CO2 savings. As part of the findings, it was revealed that the incorporation of waste plastic bottles into concrete slabs results in a reduction in the cost and volume of concrete. Again, using recycled plastic bottles in the slabs saved money, but for each percentage of bottles used, additional materials (plastic bottles, chicken wire, etc.) and labour were needed, which added to the cost. It was also revealed that embodied energy and CO2 emissions decrease as the percentage of plastic bottles in the slab increases. The study has confirmed that the void slab made with plastic bottles is more sustainable than the traditional solid slab system when it comes to cost, energy use, and CO2emissions.


Doi: 10.28991/CEJ-2022-08-11-09

Full Text: PDF


Waste Plastic Bottles; CO2 Emission; Concrete Slab; Sustainability; Embodied Energy.


Sandanayake, M., Bouras, Y., Haigh, R., &Vrcelj, Z. (2020). Current sustainable trends of using waste materials in concrete—a decade review. Sustainability (Switzerland), 12(22), 1–38. doi:10.3390/su12229622.

Luo, W., Sandanayake, M., & Zhang, G. (2019). Direct and indirect carbon emissions in foundation construction – Two case studies of driven precast and cast-in-situ piles. Journal of Cleaner Production, 211, 1517–1526. doi:10.1016/j.jclepro.2018.11.244.

Hong, J., Shen, G. Q., Feng, Y., Lau, W. S. T., & Mao, C. (2015). Greenhouse gas emissions during the construction phase of a building: A case study in China. Journal of Cleaner Production, 103, 249–259. doi:10.1016/j.jclepro.2014.11.023.

García-Segura, T., Yepes, V., & Alcalá, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1), 3–12. doi:10.1007/s11367-013-0614-0.

Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2010). Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings, 42(8), 1238–1247. doi:10.1016/j.enbuild.2010.02.016.

Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Construction and Building Materials, 77, 357–369. doi:10.1016/j.conbuildmat.2014.12.103.

Hossain, M. U., & Poon, C. S. (2018). Comparative LCA of wood waste management strategies generated from building construction activities. Journal of Cleaner Production, 177, 387–397. doi:10.1016/j.jclepro.2017.12.233.

Heriyanto, Pahlevani, F., & Sahajwalla, V. (2018). From waste glass to building materials – An innovative sustainable solution for waste glass. Journal of Cleaner Production, 191, 192–206. doi:10.1016/j.jclepro.2018.04.214.

Sandanayake, M., Zhang, G., & Setunge, S. (2019). Estimation of environmental emissions and impacts of building construction – A decision making tool for contractors. Journal of Building Engineering, 21, 173–185. doi:10.1016/j.jobe.2018.10.023.

Ali, M. S., & Babu, S. A. (2019). A Structural Study on Bubble Deck Slab and Its Properties. International Journal of Research & Review (IJRR), 6(10), 352-357.

Thomas, A., Febeena, K. K., Jahfar, P. A., & Baby, A. (2019). An Experimental Study on Flexural Strength of Bubble Deck Slab. International Research Journal of Engineering and Technology, 06(05), 5804–5809.

Cardoso, R., Silva, R. V., Brito, de J., & Dhir, R. (2016). Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review. Waste Management, 49, 131–145. doi:10.1016/j.wasman.2015.12.021.

Callejas, I. J. A., Durante, L. C., & de Oliveira, A. S. (2017). Thermal resistance and conductivity of recycled construction and demolition waste (RCDW) concrete blocks. Revista Escola de Minas, 70(2), 167–173. doi:10.1590/0370-44672015700048.

Sargam, Y., Wang, K., & Alleman, J. E. (2020). Effects of Modern Concrete Materials on Thermal Conductivity. Journal of Materials in Civil Engineering, 32(4), 4020058. doi:10.1061/(asce)mt.1943-5533.0003026.

Yokoo, N., Yokoyama, K., Seo, S., Passer, A., Zelezna, J.,…, Frischknecht, R., & Moncaster, A. (2016). Evaluation of Embodied Energy and CO2eq for Building Construction (Annex 57): Overview of Annex 57 Results. Institute for Building Environment and Energy Conservation, Tokyo, Japan.

Ndiaye, D., Bernier, M., & Zmeureanu, R. (2005). Evaluation of the embodied energy in building materials and related carbon dioxide emissions in Senegal. Proceedings of the 2005 World Sustainable Building Conference, 27-29 September, 2005, Tokyo, Japan.

Hammond, G., Jones, C., Lowrie, E. F., & Tse, P. (2011). Embodied carbon. The inventory of carbon and energy (ICE). Version (2.0). Joint Venture of University of BATH and BSRIA. Available online: (accessed on August 2022).

Alcorn, A. (2003). Embodied Energy and CO2 Coefficients for NZ Building Materials. Centre for Building Performance Research, Victoria University of Wellington, Weelington, New Zealand. Available online: centres/cbpr/resources/pdfs/ee-co2_report_2003.pdf (accessed on May 2022).

IFC Database. (2017). India construction materials database of embodied energy and global warming potential. Methodology Report, International Finance Corporation, World Bank Group, Washington, United States. Available online: 20Energy%20and%20Global%20Warming%20Potential%20-%20Methodology%20Report.pdf (accessed on August 2022).

Shiuly, A., Hazra, T., Sau, D., & Maji, D. (2022). Performance and optimisation study of waste plastic aggregate based sustainable concrete – A machine learning approach. Cleaner Waste Systems, 2, 100014. doi:10.1016/j.clwas.2022.100014.

UN Environment Programme (2022). Our planet is choking on plastic. Available online: (accessed on June 2022).

European Commission Directorate-General Environment (2011). Management Plan 2011. DG Environment. Available online: (accessed on August 2022).

da Luz Garcia, M., Oliveira, M. R., Silva, T. N., & Castro, A. C. M. (2021). Performance of mortars with PET. Journal of Material Cycles and Waste Management, 23(2), 699–706. doi:10.1007/s10163-020-01160-w.

Tayeh, B. A., Almeshal, I., Magbool, H. M., Alabduljabbar, H., & Alyousef, R. (2021). Performance of sustainable concrete containing different types of recycled plastic. Journal of Cleaner Production, 328, 328. doi:10.1016/j.jclepro.2021.129517.

Akçaözoǧlu, S., Atiş, C. D., & Akçaözoǧlu, K. (2010). An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Management, 30(2), 285–290. doi:10.1016/j.wasman.2009.09.033.

Correia, J. R., Lima, J. S., & De Brito, J. (2014). Post-fire mechanical performance of concrete made with selected plastic waste aggregates. Cement and Concrete Composites, 53, 187–199. doi:10.1016/j.cemconcomp.2014.07.004.

Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research and Technology, 9(3), 4631–4643. doi:10.1016/j.jmrt.2020.02.090.

Mohammed, A. A., Mohammed, I. I., & Mohammed, S. A. (2019). Some properties of concrete with plastic aggregate derived from shredded PVC sheets. Construction and Building Materials, 201, 232–245. doi:10.1016/j.conbuildmat.2018.12.145.

Safi, B., Saidi, M., Aboutaleb, D., & Maallem, M. (2013). The use of plastic waste as fine aggregate in the self-compacting mortars: Effect on physical and mechanical properties. Construction and Building Materials, 43, 436–442. doi:10.1016/j.conbuildmat.2013.02.049.

Zulkernain, N. H., Gani, P., Chuck Chuan, N., & Uvarajan, T. (2021). Utilisation of plastic waste as aggregate in construction materials: A review. Construction and Building Materials, 296. doi:10.1016/j.conbuildmat.2021.123669.

Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12. doi:10.1016/j.cscm.2020.e00330.

Babafemi, A. J., Šavija, B., Paul, S. C., & Anggraini, V. (2018). Engineering properties of concrete with waste recycled plastic: A review. Sustainability (Switzerland), 10(11), 3875. doi:10.3390/su10113875.

Lamba, P., Kaur, D. P., Raj, S., & Sorout, J. (2021). Recycling/reuse of plastic waste as construction material for sustainable development: a review. Environmental Science and Pollution Research, 29, 86156–86179. doi:10.1007/s11356-021-16980-y.

Belmokaddem, M., Mahi, A., Senhadji, Y., & Pekmezci, B. Y. (2020). Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate. Construction and Building Materials, 257. doi:10.1016/j.conbuildmat.2020.119559.

Yang, S., Yue, X., Liu, X., & Tong, Y. (2015). Properties of self-compacting lightweight concrete containing recycled plastic particles. Construction and Building Materials, 84, 444–453. doi:10.1016/j.conbuildmat.2015.03.038.

Sharba, A. A. K., & Ibrahim, A. J. (2020). Evaluating the use of steel scrap, waste tiles, waste paving blocks and silica fume in flexural behavior of concrete. Innovative Infrastructure Solutions, 5(3), 1-15. doi:10.1007/s41062-020-00341-8.

United Nations Human Settlements Programme. (2020). The Value of Sustainable Urbanization. World Cities Report, Nairobi, Kenya. Available online: (accessed on May 2022).

Danso, H. (2013). Building houses with locally available materials in Ghana: benefits and problems. International Journal of Science and Technology, 2(2), 225-231.

Abishek, V., & Iyappan, G. R. (2021). Study on flexural behavior of bubble deck slab strengthened with FRP. Journal of Physics: Conference Series, 2040(1), 12018. doi:10.1088/1742-6596/2040/1/012018.

Dheepan, K. R., Saranya, S., & Aswini, S. (2017). Experimental study on bubble deck slab using polypropylene balls. International Journal of Engineering Development and Research, 5(4), 716-721.

Yaagoob, A. H., & Harba, I. S. (2020). Behavior of Self Compacting Reinforced Concrete One Way Bubble Deck Slab. Al-Nahrain Journal for Engineering Sciences, 23(1), 1–11. doi:10.29194/njes.23010001.

Mahdi, A. A., & Ismael, M. A. (2020). Flexural Behavior and Sustainability Analysis of Hollow-core R.C. One-way Slabs. 2020 3rd International Conference on Engineering Technology and Its Applications (IICETA). doi:10.1109/iiceta50496.2020.9318843.

Mahdi, A. S., & Mohammed, S. D. (2021). Structural behavior of bubbledeck slab under uniformly distributed load. Civil Engineering Journal (Iran), 7(2), 304–319. doi:10.28991/cej-2021-03091655.

Shetkar, A., & Hanche, N. (2015). An experimental study on bubble deck slab system with elliptical balls. Proceeding of NCRIET-2015 and Indian journal of Science Research, 12(1), 021-027.

Amer M. Ibrahim, Nazar K. Ali, & Wissam D. Salman. (2013). Flexural Capacities of Reinforced Concrete Two-Way Bubbledeck Slabs of Plastic Spherical Voids. Diyala Journal of Engineering Sciences, 6(2), 9–20. doi:10.24237/djes.2013.06202.

Teja, P. P., Kumar, P. V., Anusha, S., Mounika, C. H., & Saha, P. (2012). Structural behavior of bubble deck slab. IEEE-International Conference on Advances in Engineering, Science and Management (ICAESM-2012), 30-31 March, 2012, Nagapattinam, India.

Hussein, L. F., Al-Taai, A. A. S., & Khudhur, I. D. (2020). Sustainability achieved by using voided slab system. AIP Conference Proceedings. doi:10.1063/5.0000216.

Yina, S., Tuladhar, R., Sheehan, M., Combe, M., & Collister, T. (2016). A life cycle assessment of recycled polypropylene fibre in concrete footpaths. Journal of Cleaner Production, 112, 2231–2242. doi:10.1016/j.jclepro.2015.09.073.

Bhogayata, A. C., & Arora, N. K. (2019). Utilization of metalized plastic waste of food packaging articles in geopolymer concrete. Journal of Material Cycles and Waste Management, 21(4), 1014–1026. doi:10.1007/s10163-019-00859-9.

Foti, D., & Paparella, F. (2014). Impact behavior of structural elements in concrete reinforced with PET grids. Mechanics Research Communications, 57, 57–66. doi:10.1016/j.mechrescom.2014.02.007.

Galvão, J. C. A., Portella, K. F., Joukoski, A., Mendes, R., & Ferreira, E. S. (2011). Use of waste polymers in concrete for repair of dam hydraulic surfaces. Construction and Building Materials, 25(2), 1049–1055. doi:10.1016/j.conbuildmat.2010.06.073.

Ghernouti, Y., & Rabehi, B. (2012). Strength and Durability of Mortar Made with Plastics Bag Waste (MPBW). International Journal of Concrete Structures and Materials, 6(3), 145–153. doi:10.1007/s40069-012-0013-0.

Ge, Z., Huang, D., Sun, R., & Gao, Z. (2014). Properties of plastic mortar made with recycled polyethylene terephthalate. Construction and Building Materials, 73, 682–687. doi:10.1016/j.conbuildmat.2014.10.005.

Coppola, B., Courard, L., Michel, F., Incarnato, L., Scarfato, P., & Di Maio, L. (2018). Hygro-thermal and durability properties of a lightweight mortar made with foamed plastic waste aggregates. Construction and Building Materials, 170, 200–206. doi:10.1016/j.conbuildmat.2018.03.083.

IS 8112:2013. (2013). Ordinary Portland Cement, 43 Grade-Specification. Bureau of Indian Standards, New Delhi, India.

IS 383:2016. (2016). Coarse and Fine Aggregate for Concrete-Specification. Bureau of Indian Standards, New Delhi, India.

IS:2386 (Part III)-1963. (1997). Method of test for Aggregates for Concrete- Part III Specific Gravity, Density, Voids, Absorption and Bulking. Bureau of Indian Standards, New Delhi, India.

IS:432 (Part I)-1982. (1992). Specification for mild Steel and Medium Tensile Steel Bars and Harf-Drawn Steel Wire for Concrete Reinforcement-Part I Mild Steel and Medium Tensile Steel Bars. Bureau of Indian Standards, New Delhi, India.

IS 456:2000. (2007). Plain and Reinforced Concrete-Code of Practice. Bureau of Indian Standards, New Delhi, India.

Amoa-Mensah, K. (2016). Building Estimating Manual for West Africa (3rd Ed.). Construction Exchange, Kumasi, Ghana. Available online: (accessed on May 2022).

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-11-09


  • There are currently no refbacks.

Copyright (c) 2022 Donald Kwabena Dadzie, A. K. Kaliluthin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.