Sustainability Performance of Voided Concrete Slab Using Waste Plastic Bottles
Vol. 8 No. 11 (2022): November
Research Articles
Downloads
Doi: 10.28991/CEJ-2022-08-11-09
Full Text: PDF
Dadzie, D. K., & Kaliluthin, A. K. (2022). Sustainability Performance of Voided Concrete Slab Using Waste Plastic Bottles. Civil Engineering Journal, 8(11), 2490–2510. https://doi.org/10.28991/CEJ-2022-08-11-09
[1] Sandanayake, M., Bouras, Y., Haigh, R., &Vrcelj, Z. (2020). Current sustainable trends of using waste materials in concrete”a decade review. Sustainability (Switzerland), 12(22), 1–38. doi:10.3390/su12229622.
[2] Luo, W., Sandanayake, M., & Zhang, G. (2019). Direct and indirect carbon emissions in foundation construction – Two case studies of driven precast and cast-in-situ piles. Journal of Cleaner Production, 211, 1517–1526. doi:10.1016/j.jclepro.2018.11.244.
[3] Hong, J., Shen, G. Q., Feng, Y., Lau, W. S. T., & Mao, C. (2015). Greenhouse gas emissions during the construction phase of a building: A case study in China. Journal of Cleaner Production, 103, 249–259. doi:10.1016/j.jclepro.2014.11.023.
[4] García-Segura, T., Yepes, V., & Alcalá, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1), 3–12. doi:10.1007/s11367-013-0614-0.
[5] Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2010). Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings, 42(8), 1238–1247. doi:10.1016/j.enbuild.2010.02.016.
[6] Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Construction and Building Materials, 77, 357–369. doi:10.1016/j.conbuildmat.2014.12.103.
[7] Hossain, M. U., & Poon, C. S. (2018). Comparative LCA of wood waste management strategies generated from building construction activities. Journal of Cleaner Production, 177, 387–397. doi:10.1016/j.jclepro.2017.12.233.
[8] Heriyanto, Pahlevani, F., & Sahajwalla, V. (2018). From waste glass to building materials – An innovative sustainable solution for waste glass. Journal of Cleaner Production, 191, 192–206. doi:10.1016/j.jclepro.2018.04.214.
[9] Sandanayake, M., Zhang, G., & Setunge, S. (2019). Estimation of environmental emissions and impacts of building construction – A decision making tool for contractors. Journal of Building Engineering, 21, 173–185. doi:10.1016/j.jobe.2018.10.023.
[10] Ali, M. S., & Babu, S. A. (2019). A Structural Study on Bubble Deck Slab and Its Properties. International Journal of Research & Review (IJRR), 6(10), 352-357.
[11] Thomas, A., Febeena, K. K., Jahfar, P. A., & Baby, A. (2019). An Experimental Study on Flexural Strength of Bubble Deck Slab. International Research Journal of Engineering and Technology, 06(05), 5804–5809.
[12] Cardoso, R., Silva, R. V., Brito, de J., & Dhir, R. (2016). Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review. Waste Management, 49, 131–145. doi:10.1016/j.wasman.2015.12.021.
[13] Callejas, I. J. A., Durante, L. C., & de Oliveira, A. S. (2017). Thermal resistance and conductivity of recycled construction and demolition waste (RCDW) concrete blocks. Revista Escola de Minas, 70(2), 167–173. doi:10.1590/0370-44672015700048.
[14] Sargam, Y., Wang, K., & Alleman, J. E. (2020). Effects of Modern Concrete Materials on Thermal Conductivity. Journal of Materials in Civil Engineering, 32(4), 4020058. doi:10.1061/(asce)mt.1943-5533.0003026.
[15] Yokoo, N., Yokoyama, K., Seo, S., Passer, A., Zelezna, J.,..., Frischknecht, R., & Moncaster, A. (2016). Evaluation of Embodied Energy and CO2eq for Building Construction (Annex 57): Overview of Annex 57 Results. Institute for Building Environment and Energy Conservation, Tokyo, Japan.
[16] Ndiaye, D., Bernier, M., & Zmeureanu, R. (2005). Evaluation of the embodied energy in building materials and related carbon dioxide emissions in Senegal. Proceedings of the 2005 World Sustainable Building Conference, 27-29 September, 2005, Tokyo, Japan.
[17] Hammond, G., Jones, C., Lowrie, E. F., & Tse, P. (2011). Embodied carbon. The inventory of carbon and energy (ICE). Version (2.0). Joint Venture of University of BATH and BSRIA. Available online: https://www.bsria.com/doc/rjREwr (accessed on August 2022).
[18] Alcorn, A. (2003). Embodied Energy and CO2 Coefficients for NZ Building Materials. Centre for Building Performance Research, Victoria University of Wellington, Weelington, New Zealand. Available online: https://www.wgtn.ac.nz/architecture/ centres/cbpr/resources/pdfs/ee-co2_report_2003.pdf (accessed on May 2022).
[19] IFC Database. (2017). India construction materials database of embodied energy and global warming potential. Methodology Report, International Finance Corporation, World Bank Group, Washington, United States. Available online: http://www.ecocities.in/sites/default/files/2018-09/India%20Construction%20Materials%20Database%20of%20Embodied% 20Energy%20and%20Global%20Warming%20Potential%20-%20Methodology%20Report.pdf (accessed on August 2022).
[20] Shiuly, A., Hazra, T., Sau, D., & Maji, D. (2022). Performance and optimisation study of waste plastic aggregate based sustainable concrete – A machine learning approach. Cleaner Waste Systems, 2, 100014. doi:10.1016/j.clwas.2022.100014.
[21] UN Environment Programme (2022). Our planet is choking on plastic. Available online: https://www.unep.org/interactive/beat-plastic-pollution/ (accessed on June 2022).
[22] European Commission Directorate-General Environment (2011). Management Plan 2011. DG Environment. Available online: https://ec.europa.eu/dgs/environment/pdf/management_plan_2011.pdf (accessed on August 2022).
[23] da Luz Garcia, M., Oliveira, M. R., Silva, T. N., & Castro, A. C. M. (2021). Performance of mortars with PET. Journal of Material Cycles and Waste Management, 23(2), 699–706. doi:10.1007/s10163-020-01160-w.
[24] Tayeh, B. A., Almeshal, I., Magbool, H. M., Alabduljabbar, H., & Alyousef, R. (2021). Performance of sustainable concrete containing different types of recycled plastic. Journal of Cleaner Production, 328, 328. doi:10.1016/j.jclepro.2021.129517.
[25] Akçaözoǧlu, S., Atiş, C. D., & Akçaözoǧlu, K. (2010). An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Management, 30(2), 285–290. doi:10.1016/j.wasman.2009.09.033.
[26] Correia, J. R., Lima, J. S., & De Brito, J. (2014). Post-fire mechanical performance of concrete made with selected plastic waste aggregates. Cement and Concrete Composites, 53, 187–199. doi:10.1016/j.cemconcomp.2014.07.004.
[27] Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research and Technology, 9(3), 4631–4643. doi:10.1016/j.jmrt.2020.02.090.
[28] Mohammed, A. A., Mohammed, I. I., & Mohammed, S. A. (2019). Some properties of concrete with plastic aggregate derived from shredded PVC sheets. Construction and Building Materials, 201, 232–245. doi:10.1016/j.conbuildmat.2018.12.145.
[29] Safi, B., Saidi, M., Aboutaleb, D., & Maallem, M. (2013). The use of plastic waste as fine aggregate in the self-compacting mortars: Effect on physical and mechanical properties. Construction and Building Materials, 43, 436–442. doi:10.1016/j.conbuildmat.2013.02.049.
[30] Zulkernain, N. H., Gani, P., Chuck Chuan, N., & Uvarajan, T. (2021). Utilisation of plastic waste as aggregate in construction materials: A review. Construction and Building Materials, 296. doi:10.1016/j.conbuildmat.2021.123669.
[31] Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12. doi:10.1016/j.cscm.2020.e00330.
[32] Babafemi, A. J., Š avija, B., Paul, S. C., & Anggraini, V. (2018). Engineering properties of concrete with waste recycled plastic: A review. Sustainability (Switzerland), 10(11), 3875. doi:10.3390/su10113875.
[33] Lamba, P., Kaur, D. P., Raj, S., & Sorout, J. (2021). Recycling/reuse of plastic waste as construction material for sustainable development: a review. Environmental Science and Pollution Research, 29, 86156–86179. doi:10.1007/s11356-021-16980-y.
[34] Belmokaddem, M., Mahi, A., Senhadji, Y., & Pekmezci, B. Y. (2020). Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate. Construction and Building Materials, 257. doi:10.1016/j.conbuildmat.2020.119559.
[35] Yang, S., Yue, X., Liu, X., & Tong, Y. (2015). Properties of self-compacting lightweight concrete containing recycled plastic particles. Construction and Building Materials, 84, 444–453. doi:10.1016/j.conbuildmat.2015.03.038.
[36] Sharba, A. A. K., & Ibrahim, A. J. (2020). Evaluating the use of steel scrap, waste tiles, waste paving blocks and silica fume in flexural behavior of concrete. Innovative Infrastructure Solutions, 5(3), 1-15. doi:10.1007/s41062-020-00341-8.
[37] United Nations Human Settlements Programme. (2020). The Value of Sustainable Urbanization. World Cities Report, Nairobi, Kenya. Available online: https://unhabitat.org/sites/default/files/2022/05/2021_annual_report.pdf (accessed on May 2022).
[38] Danso, H. (2013). Building houses with locally available materials in Ghana: benefits and problems. International Journal of Science and Technology, 2(2), 225-231.
[39] Abishek, V., & Iyappan, G. R. (2021). Study on flexural behavior of bubble deck slab strengthened with FRP. Journal of Physics: Conference Series, 2040(1), 12018. doi:10.1088/1742-6596/2040/1/012018.
[40] Dheepan, K. R., Saranya, S., & Aswini, S. (2017). Experimental study on bubble deck slab using polypropylene balls. International Journal of Engineering Development and Research, 5(4), 716-721.
[41] Yaagoob, A. H., & Harba, I. S. (2020). Behavior of Self Compacting Reinforced Concrete One Way Bubble Deck Slab. Al-Nahrain Journal for Engineering Sciences, 23(1), 1–11. doi:10.29194/njes.23010001.
[42] Mahdi, A. A., & Ismael, M. A. (2020). Flexural Behavior and Sustainability Analysis of Hollow-core R.C. One-way Slabs. 2020 3rd International Conference on Engineering Technology and Its Applications (IICETA). doi:10.1109/iiceta50496.2020.9318843.
[43] Mahdi, A. S., & Mohammed, S. D. (2021). Structural behavior of bubbledeck slab under uniformly distributed load. Civil Engineering Journal (Iran), 7(2), 304–319. doi:10.28991/cej-2021-03091655.
[44] Shetkar, A., & Hanche, N. (2015). An experimental study on bubble deck slab system with elliptical balls. Proceeding of NCRIET-2015 and Indian journal of Science Research, 12(1), 021-027.
[45] Amer M. Ibrahim, Nazar K. Ali, & Wissam D. Salman. (2013). Flexural Capacities of Reinforced Concrete Two-Way Bubbledeck Slabs of Plastic Spherical Voids. Diyala Journal of Engineering Sciences, 6(2), 9–20. doi:10.24237/djes.2013.06202.
[46] Teja, P. P., Kumar, P. V., Anusha, S., Mounika, C. H., & Saha, P. (2012). Structural behavior of bubble deck slab. IEEE-International Conference on Advances in Engineering, Science and Management (ICAESM-2012), 30-31 March, 2012, Nagapattinam, India.
[47] Hussein, L. F., Al-Taai, A. A. S., & Khudhur, I. D. (2020). Sustainability achieved by using voided slab system. AIP Conference Proceedings. doi:10.1063/5.0000216.
[48] Yina, S., Tuladhar, R., Sheehan, M., Combe, M., & Collister, T. (2016). A life cycle assessment of recycled polypropylene fibre in concrete footpaths. Journal of Cleaner Production, 112, 2231–2242. doi:10.1016/j.jclepro.2015.09.073.
[49] Bhogayata, A. C., & Arora, N. K. (2019). Utilization of metalized plastic waste of food packaging articles in geopolymer concrete. Journal of Material Cycles and Waste Management, 21(4), 1014–1026. doi:10.1007/s10163-019-00859-9.
[50] Foti, D., & Paparella, F. (2014). Impact behavior of structural elements in concrete reinforced with PET grids. Mechanics Research Communications, 57, 57–66. doi:10.1016/j.mechrescom.2014.02.007.
[51] Galví£o, J. C. A., Portella, K. F., Joukoski, A., Mendes, R., & Ferreira, E. S. (2011). Use of waste polymers in concrete for repair of dam hydraulic surfaces. Construction and Building Materials, 25(2), 1049–1055. doi:10.1016/j.conbuildmat.2010.06.073.
[52] Ghernouti, Y., & Rabehi, B. (2012). Strength and Durability of Mortar Made with Plastics Bag Waste (MPBW). International Journal of Concrete Structures and Materials, 6(3), 145–153. doi:10.1007/s40069-012-0013-0.
[53] Ge, Z., Huang, D., Sun, R., & Gao, Z. (2014). Properties of plastic mortar made with recycled polyethylene terephthalate. Construction and Building Materials, 73, 682–687. doi:10.1016/j.conbuildmat.2014.10.005.
[54] Coppola, B., Courard, L., Michel, F., Incarnato, L., Scarfato, P., & Di Maio, L. (2018). Hygro-thermal and durability properties of a lightweight mortar made with foamed plastic waste aggregates. Construction and Building Materials, 170, 200–206. doi:10.1016/j.conbuildmat.2018.03.083.
[55] IS 8112:2013. (2013). Ordinary Portland Cement, 43 Grade-Specification. Bureau of Indian Standards, New Delhi, India.
[56] IS 383:2016. (2016). Coarse and Fine Aggregate for Concrete-Specification. Bureau of Indian Standards, New Delhi, India.
[57] IS:2386 (Part III)-1963. (1997). Method of test for Aggregates for Concrete- Part III Specific Gravity, Density, Voids, Absorption and Bulking. Bureau of Indian Standards, New Delhi, India.
[58] IS:432 (Part I)-1982. (1992). Specification for mild Steel and Medium Tensile Steel Bars and Harf-Drawn Steel Wire for Concrete Reinforcement-Part I Mild Steel and Medium Tensile Steel Bars. Bureau of Indian Standards, New Delhi, India.
[59] IS 456:2000. (2007). Plain and Reinforced Concrete-Code of Practice. Bureau of Indian Standards, New Delhi, India.
[60] Amoa-Mensah, K. (2016). Building Estimating Manual for West Africa (3rd Ed.). Construction Exchange, Kumasi, Ghana. Available online: https://constructionexchangegh.com/makeover/bem/cieig-publication-building-estimating-manual-3ed (accessed on May 2022).
[2] Luo, W., Sandanayake, M., & Zhang, G. (2019). Direct and indirect carbon emissions in foundation construction – Two case studies of driven precast and cast-in-situ piles. Journal of Cleaner Production, 211, 1517–1526. doi:10.1016/j.jclepro.2018.11.244.
[3] Hong, J., Shen, G. Q., Feng, Y., Lau, W. S. T., & Mao, C. (2015). Greenhouse gas emissions during the construction phase of a building: A case study in China. Journal of Cleaner Production, 103, 249–259. doi:10.1016/j.jclepro.2014.11.023.
[4] García-Segura, T., Yepes, V., & Alcalá, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1), 3–12. doi:10.1007/s11367-013-0614-0.
[5] Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2010). Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings, 42(8), 1238–1247. doi:10.1016/j.enbuild.2010.02.016.
[6] Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Construction and Building Materials, 77, 357–369. doi:10.1016/j.conbuildmat.2014.12.103.
[7] Hossain, M. U., & Poon, C. S. (2018). Comparative LCA of wood waste management strategies generated from building construction activities. Journal of Cleaner Production, 177, 387–397. doi:10.1016/j.jclepro.2017.12.233.
[8] Heriyanto, Pahlevani, F., & Sahajwalla, V. (2018). From waste glass to building materials – An innovative sustainable solution for waste glass. Journal of Cleaner Production, 191, 192–206. doi:10.1016/j.jclepro.2018.04.214.
[9] Sandanayake, M., Zhang, G., & Setunge, S. (2019). Estimation of environmental emissions and impacts of building construction – A decision making tool for contractors. Journal of Building Engineering, 21, 173–185. doi:10.1016/j.jobe.2018.10.023.
[10] Ali, M. S., & Babu, S. A. (2019). A Structural Study on Bubble Deck Slab and Its Properties. International Journal of Research & Review (IJRR), 6(10), 352-357.
[11] Thomas, A., Febeena, K. K., Jahfar, P. A., & Baby, A. (2019). An Experimental Study on Flexural Strength of Bubble Deck Slab. International Research Journal of Engineering and Technology, 06(05), 5804–5809.
[12] Cardoso, R., Silva, R. V., Brito, de J., & Dhir, R. (2016). Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review. Waste Management, 49, 131–145. doi:10.1016/j.wasman.2015.12.021.
[13] Callejas, I. J. A., Durante, L. C., & de Oliveira, A. S. (2017). Thermal resistance and conductivity of recycled construction and demolition waste (RCDW) concrete blocks. Revista Escola de Minas, 70(2), 167–173. doi:10.1590/0370-44672015700048.
[14] Sargam, Y., Wang, K., & Alleman, J. E. (2020). Effects of Modern Concrete Materials on Thermal Conductivity. Journal of Materials in Civil Engineering, 32(4), 4020058. doi:10.1061/(asce)mt.1943-5533.0003026.
[15] Yokoo, N., Yokoyama, K., Seo, S., Passer, A., Zelezna, J.,..., Frischknecht, R., & Moncaster, A. (2016). Evaluation of Embodied Energy and CO2eq for Building Construction (Annex 57): Overview of Annex 57 Results. Institute for Building Environment and Energy Conservation, Tokyo, Japan.
[16] Ndiaye, D., Bernier, M., & Zmeureanu, R. (2005). Evaluation of the embodied energy in building materials and related carbon dioxide emissions in Senegal. Proceedings of the 2005 World Sustainable Building Conference, 27-29 September, 2005, Tokyo, Japan.
[17] Hammond, G., Jones, C., Lowrie, E. F., & Tse, P. (2011). Embodied carbon. The inventory of carbon and energy (ICE). Version (2.0). Joint Venture of University of BATH and BSRIA. Available online: https://www.bsria.com/doc/rjREwr (accessed on August 2022).
[18] Alcorn, A. (2003). Embodied Energy and CO2 Coefficients for NZ Building Materials. Centre for Building Performance Research, Victoria University of Wellington, Weelington, New Zealand. Available online: https://www.wgtn.ac.nz/architecture/ centres/cbpr/resources/pdfs/ee-co2_report_2003.pdf (accessed on May 2022).
[19] IFC Database. (2017). India construction materials database of embodied energy and global warming potential. Methodology Report, International Finance Corporation, World Bank Group, Washington, United States. Available online: http://www.ecocities.in/sites/default/files/2018-09/India%20Construction%20Materials%20Database%20of%20Embodied% 20Energy%20and%20Global%20Warming%20Potential%20-%20Methodology%20Report.pdf (accessed on August 2022).
[20] Shiuly, A., Hazra, T., Sau, D., & Maji, D. (2022). Performance and optimisation study of waste plastic aggregate based sustainable concrete – A machine learning approach. Cleaner Waste Systems, 2, 100014. doi:10.1016/j.clwas.2022.100014.
[21] UN Environment Programme (2022). Our planet is choking on plastic. Available online: https://www.unep.org/interactive/beat-plastic-pollution/ (accessed on June 2022).
[22] European Commission Directorate-General Environment (2011). Management Plan 2011. DG Environment. Available online: https://ec.europa.eu/dgs/environment/pdf/management_plan_2011.pdf (accessed on August 2022).
[23] da Luz Garcia, M., Oliveira, M. R., Silva, T. N., & Castro, A. C. M. (2021). Performance of mortars with PET. Journal of Material Cycles and Waste Management, 23(2), 699–706. doi:10.1007/s10163-020-01160-w.
[24] Tayeh, B. A., Almeshal, I., Magbool, H. M., Alabduljabbar, H., & Alyousef, R. (2021). Performance of sustainable concrete containing different types of recycled plastic. Journal of Cleaner Production, 328, 328. doi:10.1016/j.jclepro.2021.129517.
[25] Akçaözoǧlu, S., Atiş, C. D., & Akçaözoǧlu, K. (2010). An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Management, 30(2), 285–290. doi:10.1016/j.wasman.2009.09.033.
[26] Correia, J. R., Lima, J. S., & De Brito, J. (2014). Post-fire mechanical performance of concrete made with selected plastic waste aggregates. Cement and Concrete Composites, 53, 187–199. doi:10.1016/j.cemconcomp.2014.07.004.
[27] Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research and Technology, 9(3), 4631–4643. doi:10.1016/j.jmrt.2020.02.090.
[28] Mohammed, A. A., Mohammed, I. I., & Mohammed, S. A. (2019). Some properties of concrete with plastic aggregate derived from shredded PVC sheets. Construction and Building Materials, 201, 232–245. doi:10.1016/j.conbuildmat.2018.12.145.
[29] Safi, B., Saidi, M., Aboutaleb, D., & Maallem, M. (2013). The use of plastic waste as fine aggregate in the self-compacting mortars: Effect on physical and mechanical properties. Construction and Building Materials, 43, 436–442. doi:10.1016/j.conbuildmat.2013.02.049.
[30] Zulkernain, N. H., Gani, P., Chuck Chuan, N., & Uvarajan, T. (2021). Utilisation of plastic waste as aggregate in construction materials: A review. Construction and Building Materials, 296. doi:10.1016/j.conbuildmat.2021.123669.
[31] Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12. doi:10.1016/j.cscm.2020.e00330.
[32] Babafemi, A. J., Š avija, B., Paul, S. C., & Anggraini, V. (2018). Engineering properties of concrete with waste recycled plastic: A review. Sustainability (Switzerland), 10(11), 3875. doi:10.3390/su10113875.
[33] Lamba, P., Kaur, D. P., Raj, S., & Sorout, J. (2021). Recycling/reuse of plastic waste as construction material for sustainable development: a review. Environmental Science and Pollution Research, 29, 86156–86179. doi:10.1007/s11356-021-16980-y.
[34] Belmokaddem, M., Mahi, A., Senhadji, Y., & Pekmezci, B. Y. (2020). Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate. Construction and Building Materials, 257. doi:10.1016/j.conbuildmat.2020.119559.
[35] Yang, S., Yue, X., Liu, X., & Tong, Y. (2015). Properties of self-compacting lightweight concrete containing recycled plastic particles. Construction and Building Materials, 84, 444–453. doi:10.1016/j.conbuildmat.2015.03.038.
[36] Sharba, A. A. K., & Ibrahim, A. J. (2020). Evaluating the use of steel scrap, waste tiles, waste paving blocks and silica fume in flexural behavior of concrete. Innovative Infrastructure Solutions, 5(3), 1-15. doi:10.1007/s41062-020-00341-8.
[37] United Nations Human Settlements Programme. (2020). The Value of Sustainable Urbanization. World Cities Report, Nairobi, Kenya. Available online: https://unhabitat.org/sites/default/files/2022/05/2021_annual_report.pdf (accessed on May 2022).
[38] Danso, H. (2013). Building houses with locally available materials in Ghana: benefits and problems. International Journal of Science and Technology, 2(2), 225-231.
[39] Abishek, V., & Iyappan, G. R. (2021). Study on flexural behavior of bubble deck slab strengthened with FRP. Journal of Physics: Conference Series, 2040(1), 12018. doi:10.1088/1742-6596/2040/1/012018.
[40] Dheepan, K. R., Saranya, S., & Aswini, S. (2017). Experimental study on bubble deck slab using polypropylene balls. International Journal of Engineering Development and Research, 5(4), 716-721.
[41] Yaagoob, A. H., & Harba, I. S. (2020). Behavior of Self Compacting Reinforced Concrete One Way Bubble Deck Slab. Al-Nahrain Journal for Engineering Sciences, 23(1), 1–11. doi:10.29194/njes.23010001.
[42] Mahdi, A. A., & Ismael, M. A. (2020). Flexural Behavior and Sustainability Analysis of Hollow-core R.C. One-way Slabs. 2020 3rd International Conference on Engineering Technology and Its Applications (IICETA). doi:10.1109/iiceta50496.2020.9318843.
[43] Mahdi, A. S., & Mohammed, S. D. (2021). Structural behavior of bubbledeck slab under uniformly distributed load. Civil Engineering Journal (Iran), 7(2), 304–319. doi:10.28991/cej-2021-03091655.
[44] Shetkar, A., & Hanche, N. (2015). An experimental study on bubble deck slab system with elliptical balls. Proceeding of NCRIET-2015 and Indian journal of Science Research, 12(1), 021-027.
[45] Amer M. Ibrahim, Nazar K. Ali, & Wissam D. Salman. (2013). Flexural Capacities of Reinforced Concrete Two-Way Bubbledeck Slabs of Plastic Spherical Voids. Diyala Journal of Engineering Sciences, 6(2), 9–20. doi:10.24237/djes.2013.06202.
[46] Teja, P. P., Kumar, P. V., Anusha, S., Mounika, C. H., & Saha, P. (2012). Structural behavior of bubble deck slab. IEEE-International Conference on Advances in Engineering, Science and Management (ICAESM-2012), 30-31 March, 2012, Nagapattinam, India.
[47] Hussein, L. F., Al-Taai, A. A. S., & Khudhur, I. D. (2020). Sustainability achieved by using voided slab system. AIP Conference Proceedings. doi:10.1063/5.0000216.
[48] Yina, S., Tuladhar, R., Sheehan, M., Combe, M., & Collister, T. (2016). A life cycle assessment of recycled polypropylene fibre in concrete footpaths. Journal of Cleaner Production, 112, 2231–2242. doi:10.1016/j.jclepro.2015.09.073.
[49] Bhogayata, A. C., & Arora, N. K. (2019). Utilization of metalized plastic waste of food packaging articles in geopolymer concrete. Journal of Material Cycles and Waste Management, 21(4), 1014–1026. doi:10.1007/s10163-019-00859-9.
[50] Foti, D., & Paparella, F. (2014). Impact behavior of structural elements in concrete reinforced with PET grids. Mechanics Research Communications, 57, 57–66. doi:10.1016/j.mechrescom.2014.02.007.
[51] Galví£o, J. C. A., Portella, K. F., Joukoski, A., Mendes, R., & Ferreira, E. S. (2011). Use of waste polymers in concrete for repair of dam hydraulic surfaces. Construction and Building Materials, 25(2), 1049–1055. doi:10.1016/j.conbuildmat.2010.06.073.
[52] Ghernouti, Y., & Rabehi, B. (2012). Strength and Durability of Mortar Made with Plastics Bag Waste (MPBW). International Journal of Concrete Structures and Materials, 6(3), 145–153. doi:10.1007/s40069-012-0013-0.
[53] Ge, Z., Huang, D., Sun, R., & Gao, Z. (2014). Properties of plastic mortar made with recycled polyethylene terephthalate. Construction and Building Materials, 73, 682–687. doi:10.1016/j.conbuildmat.2014.10.005.
[54] Coppola, B., Courard, L., Michel, F., Incarnato, L., Scarfato, P., & Di Maio, L. (2018). Hygro-thermal and durability properties of a lightweight mortar made with foamed plastic waste aggregates. Construction and Building Materials, 170, 200–206. doi:10.1016/j.conbuildmat.2018.03.083.
[55] IS 8112:2013. (2013). Ordinary Portland Cement, 43 Grade-Specification. Bureau of Indian Standards, New Delhi, India.
[56] IS 383:2016. (2016). Coarse and Fine Aggregate for Concrete-Specification. Bureau of Indian Standards, New Delhi, India.
[57] IS:2386 (Part III)-1963. (1997). Method of test for Aggregates for Concrete- Part III Specific Gravity, Density, Voids, Absorption and Bulking. Bureau of Indian Standards, New Delhi, India.
[58] IS:432 (Part I)-1982. (1992). Specification for mild Steel and Medium Tensile Steel Bars and Harf-Drawn Steel Wire for Concrete Reinforcement-Part I Mild Steel and Medium Tensile Steel Bars. Bureau of Indian Standards, New Delhi, India.
[59] IS 456:2000. (2007). Plain and Reinforced Concrete-Code of Practice. Bureau of Indian Standards, New Delhi, India.
[60] Amoa-Mensah, K. (2016). Building Estimating Manual for West Africa (3rd Ed.). Construction Exchange, Kumasi, Ghana. Available online: https://constructionexchangegh.com/makeover/bem/cieig-publication-building-estimating-manual-3ed (accessed on May 2022).
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
