A Highly Sustainable Timber-Cork Modular System for Lightweight Temporary Housing
Abstract
Doi: 10.28991/CEJ-2022-08-10-020
Full Text: PDF
Keywords
References
Klochko, A. R. (2022). Visions of the Future of Post-Industrial and Post-Pandemic Housing Architecture. IOP Conference Series: Earth and Environmental Science, 988(4). doi:10.1088/1755-1315/988/4/042077.
Arslan, H. (2007). Re-design, re-use and recycle of temporary houses. Building and Environment, 42(1), 400–406. doi:10.1016/j.buildenv.2005.07.032.
Moreno-Sierra, A., Pieschacón, M., & Khan, A. (2020). The use of recycled plastics for the design of a thermal resilient emergency shelter prototype. International Journal of Disaster Risk Reduction, 50, 101885. doi:10.1016/j.ijdrr.2020.101885.
Radogna, D. (2018). Emergency and tourism in Abruzzo. A temporary house system. AGATHÓN, International Journal of Architecture, Art and Design, 4, 177-186. doi:10.19229/2464-9309/4222018.
UN, United Nations. (2006). Exploring key changes and developments in post-disaster settlement, shelter and housing, 1982–2006: Scoping study to inform the revision of ‘Shelter after Disaster: Guidelines for Assistance. United Nations, Geneva, Switzerland.
Haapio, A., & Viitaniemi, P. (2008). A critical review of building environmental assessment tools. Environmental Impact Assessment Review, 28(7), 469–482. doi:10.1016/j.eiar.2008.01.002.
Gomez-Echeverri, L. (2018). Climate and development: Enhancing impact through stronger linkages in the implementation of the Paris Agreement and the Sustainable Development Goals (SDGs). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), 177–186. doi:10.1098/rsta.2016.0444.
Bashawri, A., Garrity, S., & Moodley, K. (2014). An Overview of the Design of Disaster Relief Shelters. Procedia Economics and Finance, 18, 924–931. doi:10.1016/s2212-5671(14)01019-3.
Zafra, R. G., Mayo, J. R. M., Villareal, P. J. M., De Padua, V. M. N., Castillo, M. H. T., Sundo, M. B., & Madlangbayan, M. S. (2021). Structural and thermal performance assessment of shipping container as post-disaster housing in tropical climates. Civil Engineering Journal (Iran), 7(8), 1437–1458. doi:10.28991/cej-2021-03091735.
Li, S., & Deng, K. (2019). Lightweight reconfigurable structure system (LRSS): Rethinking temporary buildings. WIT Transactions on the Built Environment, 183, 101–112. doi:10.2495/ARC180101.
Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394–416. doi:10.1016/j.rser.2013.08.037.
Vilches, A., Garcia-Martinez, A., & Sanchez-Montañes, B. (2017). Life cycle assessment (LCA) of building refurbishment: A literature review. Energy and Buildings, 135, 286–301. doi:10.1016/j.enbuild.2016.11.042.
Alshawawreh, L., Pomponi, F., D’Amico, B., Snaddon, S., & Guthrie, P. (2020). Qualifying the sustainability of novel designs and existing solutions for post-disaster and post-conflict sheltering. Sustainability (Switzerland), 12(3). doi:10.3390/su12030890.
Salvalai, G., Sesana, M. M., Brutti, D., & Imperadori, M. (2020). Design and performance analysis of a lightweight flexible nZEB. Sustainability (Switzerland), 12(15), 1–26,. doi:10.3390/su12155986.
Hosseini, S. M. A., Farahzadi, L., & Pons, O. (2021). Assessing the sustainability index of different post-disaster temporary housing unit configuration types. Journal of Building Engineering, 42(February), 102806. doi:10.1016/j.jobe.2021.102806.
Yang, S., Wi, S., Cho, H. M., Park, J. H., Yun, B. Y., & Kim, S. (2020). Developing energy-efficient temporary houses for sustainable urban regeneration: Manufacturing homes with loess, pearlite, and vermiculite. Sustainable Cities and Society, 61(May), 102287. doi:10.1016/j.scs.2020.102287.
Bovo, M., Giani, N., Barbaresi, A., Mazzocchetti, L., Barbaresi, L., Giorgini, L., Torreggiani, D., & Tassinari, P. (2022). Contribution to thermal and acoustic characterization of corn cob for bio-based building insulation applications. Energy and Buildings, 262, 111994. doi:10.1016/j.enbuild.2022.111994.
Obyn, S., Van Moeseke, G., & Virgo, V. (2015). Thermal performance of shelter modelling: Improvement of temporary structures. Energy and Buildings, 89, 170–182. doi:10.1016/j.enbuild.2014.12.035.
Barreca, F., & Fichera, C. R. (2015). Thermal insulating characteristics of cork agglomerate panels in sustainable food buildings. CEUR Workshop Proceedings, 1498, 358–366.
Skuratov, N. (2010). New lightweight solid wood panels for green building. Proceedings of the International convention of society of wood science and technology and United Nations Economic Commission for Europe—Timber Committee, 11-14 October, 2010, Geneva, Switzerland.
Naji, S., Çelik, O. C., Johnson Alengaram, U., Jumaat, M. Z., & Shamshirband, S. (2014). Structure, energy and cost efficiency evaluation of three different lightweight construction systems used in low-rise residential buildings. Energy and Buildings, 84, 727–739. doi:10.1016/j.enbuild.2014.08.009.
Barreca, F. (2018). Utilization of cork residues for high performance walls in green buildings. Agricultural Engineering International: CIGR Journal, 20(1), 47-55.
Barreca, F., & Praticò, P. (2019). Environmental indoor thermal control of extra virgin olive oil storage room with phase change materials. Journal of Agricultural Engineering, 50(4), 208–214. doi:10.4081/jae.2019.947.
Barreca, F., & Tirella, V. (2017). A self-built shelter in wood and agglomerated cork panels for temporary use in Mediterranean climate areas. Energy and Buildings, 142, 1–7. doi:10.1016/j.enbuild.2017.03.003.
Ni, C., He, M., & Chen, S. (2012). Evaluation of Racking Performance of Wood Portal Frames with Different Wall Configurations and Construction Details. Journal of Structural Engineering, 138(8), 984–994. doi:10.1061/(asce)st.1943-541x.0000537.
Evola, G., & Marletta, L. (2014). The effectiveness of PCM wallboards for the energy refurbishment of lightweight buildings. Energy Procedia, 62, 13–21. doi:10.1016/j.egypro.2014.12.362.
Guralp, A. (2000). Screw pile foundations. WIT Transactions on the Built Environment, 47. doi:10.2495/MRS000191.
Croce, P., Landi, F., Formichi, P., Beconcini, M.L., Puccini, B., Zotti, V. (2022). Non-linear Methods for the Assessment of Seismic Vulnerability of Masonry Historical Buildings. Protection of Historical Constructions. PROHITECH 2021. Lecture Notes in Civil Engineering, 209, Springer, Cham, Switzerland. doi:10.1007/978-3-030-90788-4_51.
Ministry of Infrastructure and Transport. (2018). Update of the 'Technical standards for construction. Available online: https://www.donnegeometra.it/portfolio/nuove-norme-tecniche-delle-costruzioni-2018 (accessed on May 2022).
Porteous, J., & Kermani, A. (2007). Structural Timber Design to Eurocode 5. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470697818.
EN 1998-1. (2004). Eurocode 8: Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels, Belgium.
Casagrande, D., Sinito, E., Izzi, M., Pasetto, G., & Polastri, A. (2021). Structural performance of a hybrid timber wall system for emergency housing facilities. Journal of Building Engineering, 33, 101566. doi:10.1016/j.jobe.2020.101566.
van de Lindt, J. W., Pei, S., Pryor, S. E., Shimizu, H., & Isoda, H. (2010). Experimental Seismic Response of a Full-Scale Six-Story Light-Frame Wood Building. Journal of Structural Engineering, 136(10), 1262–1272. doi:10.1061/(asce)st.1943-541x.0000222.
NTC 2018. (2018). New seismic standards for structural calculation. Available online: https://www.studiopetrillo.com/ ntc2018.html (accessed on May 2022).
EN 1991-1-1. (2002). Eurocode 1: Actions on structures-Part1-1: General actions-Densities, self-weight, imposed loads for buildings. European Committee for Standardization, Brussels, Belgium.
EN 1995-1-1. (2004). Eurocode 5: Design of timber structures. European Committee for Standardization, Brussels, Belgium.
He, X., Chen, Y., Ke, K., Shao, T., & Yam, M. C. H. (2022). Development of a connection equipped with fuse angles for steel moment resisting frames. Engineering Structures, 265. doi:10.1016/j.engstruct.2022.114503.
Doswell, C. A., Brooks, H. E., & Dotzek, N. (2009). On the implementation of the enhanced Fujita scale in the USA. Atmospheric Research, 93(1–3), 554–563. doi:10.1016/j.atmosres.2008.11.003.
Barreca, F., & Praticò, P. (2018). Post-occupancy evaluation of buildings for sustainable agri-food production-A method applied to an olive oil mill. Buildings, 8(7), 83. doi:10.3390/buildings8070083.
Bruno, R., Arcuri, N., & Carpino, C. (2015). The passive house in Mediterranean area: Parametric analysis and dynamic simulation of the thermal behaviour of an innovative prototype. Energy Procedia, 82, 533–539. doi:10.1016/j.egypro.2015.11.866.
Santolini, E., Bovo, M., Barbaresi, A., Torreggiani, D., & Tassinari, P. (2021). Turning agricultural wastes into biomaterials: Assessing the sustainability of scenarios of circular valorization of corn cob in a life-cycle perspective. Applied Sciences (Switzerland), 11(14). doi:10.3390/app11146281.
Gómez, J., Tascón, A., & Ayuga, F. (2018). Systematic layout planning of wineries: the case of Rioja region (Spain). Journal of Agricultural Engineering, 49(1), 34–41. doi:10.4081/jae.2018.778.
Bruno, R., Bevilacqua, P., Rollo, A., Barreca, F., & Arcuri, N. (2022). A Novel Bio-Architectural Temporary Housing Designed for the Mediterranean Area: Theoretical and Experimental Analysis. Energies, 15(9). doi:10.3390/en15093243.
Barbaresi, A., Bovo, M., Santolini, E., Barbaresi, L., Torreggiani, D., & Tassinari, P. (2020). Development of a low-cost movable hot box for a preliminary definition of the thermal conductance of building envelopes. Building and Environment, 180, 107034. doi:10.1016/j.buildenv.2020.107034.
UNI/TS 11300-1:2014. (2014). Energy performance of buildings-Part1: Evaluation of energy need for space heating and cooling. UNI UN MONDO FATTO BENE. (In Italian).
Arcuri, N., Bruno, R., & Bevilacqua, P. (2015). Influence of the optical and geometrical properties of indoor environments for the thermal performances of chilled ceilings. Energy and Buildings, 88, 229–237. doi:10.1016/j.enbuild.2014.12.009.
Asdrubali, F., Baldassarri, C., & Fthenakis, V. (2013). Life cycle analysis in the construction sector: Guiding the optimization of conventional Italian buildings. Energy and Buildings, 64, 73–89. doi:10.1016/j.enbuild.2013.04.018.
Kubba, S. (2012). Handbook of Green Building Design and Construction. Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/c2009-0-64483-4.
Mattoni, B., Guattari, C., Evangelisti, L., Bisegna, F., Gori, P., & Asdrubali, F. (2018). Critical review and methodological approach to evaluate the differences among international green building rating tools. Renewable and Sustainable Energy Reviews, 82, 950–960. doi:10.1016/j.rser.2017.09.105.
Ameen, R. F. M., Mourshed, M., & Li, H. (2015). A critical review of environmental assessment tools for sustainable urban design. Environmental Impact Assessment Review, 55, 110–125. doi:10.1016/j.eiar.2015.07.006.
Allotey, I. A. (1987). Low-cost test rig for structural engineering tests. Materials and Structures, 20(5), 370–373. doi:10.1007/BF02472584.
Elamin, M. D. E. (2020). Life cycle assessment as a decision-making tool in the design choices of buildings. Masters Thesis, Territorial, Urban, Environmental and Landscape Planning, Polytechnic University of Turin, Turin, Italy.
BS EN 15978:2011. (2012). Sustainability of construction works - Assessment of environmental performance of buildings. Calculation method. British Standard Institute (BSI), London, United Kingdom.
ISO 14044:2006. (2022). Environmental management-Life cycle assessment-Requirements and guidelines. International Organization for Standardization (ISO), Geneva, Switzerland.
EN 15804. (2022). European Standard for the generation of EPD for construction products. BRE Trust, Watford, United Kingdom.
BS EN 15804:2012+A1:2013. (2014). Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products. British Standard Institute (BSI), London, United Kingdom.
Koke, J., Schippmann, A., Shen, J., Zhang, X., Kaufmann, P., & Krause, S. (2021). Strategies of design concepts and energy systems for nearly zero-energy container buildings (NZECBs) in different climates. Buildings, 11(8), 364. doi:10.3390/buildings11080364.
DOI: 10.28991/CEJ-2022-08-10-020
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Francesco Barreca
This work is licensed under a Creative Commons Attribution 4.0 International License.