Performance of Fly Ash Concrete with Nickel Slag Fine Aggregate in the Marine Environment
Abstract
Doi: 10.28991/CEJ-2022-08-12-010
Full Text: PDF
Keywords
References
Meyer, C. (2004). Concrete Materials and Sustainable Development in the USA. Structural Engineering International, 14(3), 203–207. doi:10.2749/101686604777963757.
Lehne, J., & Preston, F. (2018). Making concrete change: Innovation in low-carbon cement and concrete. Chatham House Report, London, United Kingdom. Available online: https://policycommons.net/artifacts/1423241/making-concrete-change/2037504/ (accessed on August 2022).
Meyer, C. (2002). Concrete and sustainable development. ACI Special Publications, 206, 501-512.
Tajra, F., Abd Elrahman, M., & Stephan, D. (2019). The production and properties of cold-bonded aggregate and its applications in concrete: A review. Construction and Building Materials, 225, 29-43. doi:10.1016/j.conbuildmat.2019.07.219.
Sai Giridhar Reddy, V., & Ranga Rao, V. (2017). Eco-friendly blocks by Blended Materials. International Journal of Engineering, Transactions B: Applications, 30(5), 636–642. doi:10.5829/idosi.ije.2017.30.05b.02.
AlArab, A., Hamad, B., & Assaad, J. J. (2022). Strength and Durability of Concrete Containing Ceramic Waste Powder and Blast Furnace Slag. Journal of Materials in Civil Engineering, 34(1). doi:10.1061/(asce)mt.1943-5533.0004031.
Kanthe, V., Deo, S., & Murmu, M. (2018). Combine use of fly ash and rice husk ash in concrete to improve its properties. International Journal of Engineering, Transactions A: Basics, 31(7), 1012–1019. doi:10.5829/ije.2018.31.07a.02.
Elchalakani, M., Basarir, H., & Karrech, A. (2017). Green Concrete with High-Volume Fly Ash and Slag with Recycled Aggregate and Recycled Water to Build Future Sustainable Cities. Journal of Materials in Civil Engineering, 29(2). doi:10.1061/(asce)mt.1943-5533.0001748.
Ho, N. Y., Lee, Y. P. K., Lim, W. F., Zayed, T., Chew, K. C., Low, G. L., & Ting, S. K. (2013). Efficient Utilization of Recycled Concrete Aggregate in Structural Concrete. Journal of Materials in Civil Engineering, 25(3), 318–327. doi:10.1061/(asce)mt.1943-5533.0000587.
Ma, Q., Guo, R., Zhao, Z., Lin, Z., & He, K. (2015). Mechanical properties of concrete at high temperature—A review. Construction and Building Materials, 93, 371-383. doi:10.1016/j.conbuildmat.2015.05.131.
Soutsos, M. (2010). Concrete durability: a practical guide to the design of durable concrete structures. ICE Publishing, London, United Kingdom.
Shetty, M. S., & Jain, A. K. (2019). Concrete Technology (Theory and Practice). Chand Publishing, New Delhi, India.
Scrivener, K. L., Crumbie, A. K., & Laugesen, P. (2004). The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Science, 12(4), 411–421. doi:10.1023/B:INTS.0000042339.92990.4c.
Yang, H. C., Cheng, M. Y., & Wang, J. P. (2012). An investigation on the interfacial transition zone in concrete using SEM. Advanced Materials Research, 446–449, 166–170. doi:10.4028/www.scientific.net/AMR.446-449.166.
Elsharief, A., Cohen, M., & Olek, J. (2004). Influence of aggregate type and gradation on the microstructure and durability properties of Portland cement mortar and concrete. International RILEM symposium on concrete science and engineering: a tribute to Arnon Bentur. doi:10.1617/2912143926.118.
Poon, C. S., Lam, L., & Wong, Y. L. (1999). Effects of fly ash and silica fume on interfacial porosity of concrete. Journal of Materials in Civil Engineering, 11(3), 197-205. doi:10.1061/(ASCE)0899-1561(1999)11:3(197).
Sadrmomtazi, A., Tahmouresi, B., & Kohani Khoshkbijari, R. (2018). Effect of fly ash and silica fume on transition zone, pore structure and permeability of concrete. Magazine of Concrete Research, 70(10), 519–532. doi.org/10.1680/jmacr.16.00537.
Serdar, M., Biljecki, I., & Bjegović, D. (2017). High-Performance Concrete Incorporating Locally Available Industrial By-Products. Journal of Materials in Civil Engineering, 29(3). doi:10.1061/(asce)mt.1943-5533.0001773.
Arezoumandi, M., Volz, J. S., Ortega, C. A., & Myers, J. J. (2015). Shear Behavior of High-Volume Fly Ash Concrete versus Conventional Concrete: Experimental Study. Journal of Structural Engineering, 141(3). doi:10.1061/(asce)st.1943-541x.0001003.
Sengul, O., & Tasdemir, M. A. (2009). Compressive strength and rapid chloride permeability of concretes with ground fly ash and slag. Journal of Materials in Civil Engineering, 21(9), 494-501. doi:10.1061/(ASCE)0899-1561(2009)21:9(494).
Nguyen, Q. D., Khan, M. S. H., Castel, A., & Kim, T. (2019). Durability and Microstructure Properties of Low-Carbon Concrete Incorporating Ferronickel Slag Sand and Fly Ash. Journal of Materials in Civil Engineering, 31(8). doi:10.1061/(asce)mt.1943-5533.0002797.
Saha, A. K., & Sarker, P. K. (2018). Durability characteristics of concrete using ferronickel slag fine aggregate and fly ash. Magazine of Concrete Research, 70(17), 865–874. doi:10.1680/jmacr.17.00260.
Deiaf, A. B. A. (2016). Bonding between Aggregates and Cement Pastes in Concrete. Journal of Civil Engineering and Architecture, 10(3), 353–358. doi:10.17265/1934-7359/2016.03.010.
Saha, A. K. (2018). Effect of class F fly ash on the durability properties of concrete. Sustainable environment research, 28(1), 25-31.doi:10.1016/j.conbuildmat.2004.03.011.
ASTM C618-03. (2017). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-03.
Zhang, Q., Ji, T., Yang, Z., Wang, C., & Wu, H. C. (2020). Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials. Construction and Building Materials, 235, 117449. doi:10.1016/j.conbuildmat.2019.117449.
ASTM C143/C143M – 12. (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0143_C0143M-12.
SNI-1974. (2011). Testing of concrete compressive strength with a cylindrical test object. National Standardization Agency, Jakarta, Indonesia.
ASTM C496/C496M-04. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-04.
ASTM C469/C469M-22. (2022). Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International, Pennsylvania, United States. doi:10.1520/C0469_C0469M-22.
Li, K. (2016). Durability design of concrete structures: Phenomena, modelling and practice. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118910108.
ASTM C642-21. (2022). Standard Test Method for Density, Absorption and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0642-21.
ASTM C1585-13. (2020). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes. ASTM International, Pennsylvania, United States. doi:10.1520/C1585-13.
NT BUILD 492. (1999). Concrete, Mortar and Cement-Based Repair Materials, Chloride Migration Coefficient On from Non-Steady-State Migration Experiments. NORDTEST, Espoo, Finland.
ACI 318-19. (2019). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Farmington Hills, United States.
DOI: 10.28991/CEJ-2022-08-12-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Syamsul Bahri Ahmad, Syamsul Bahri Ahmad
This work is licensed under a Creative Commons Attribution 4.0 International License.