AI Mix Design of Fly Ash Admixed Concrete Based on Mechanical and Environmental Impact Considerations

Kennedy C. Onyelowe, Ahmed M. Ebid, Hisham A. Mahdi, Fortune K. C. Onyelowe, Yazdan Shafieyoon, Michael E. Onyia, Hyginus N. Onah

Abstract


It has become very important in the field of concrete technology to develop intelligent models to reduce overdependence on laboratory studies prior to concrete infrastructure designs. In order to achieve this, a database representing the global behavior and performance of concrete mixes is collected and prepared for use. In this research work, an extensive literature search was used to collect 112 concrete mixes corresponding to fly ash and binder ratios (FA/B), coarse aggregate and binder ratios (CAg/B), fine aggregate and binder ratios (FAg/B), 28-day concrete compressive strength (Fc28), and the environmental impact point (P) estimated as a life cycle assessment of greenhouse gas emissions from fly ash- and cement-based concrete. Statistical analysis, linear regression (LNR), and artificial intelligence (AI) studies were conducted on the collected database. The material binder ratios were deployed as input variables to predict Fc28 and P as the response variables. From the collected concrete mix data, it was observed that mixes with a higher cement content produce higher compressive strengths and a higher carbon footprint impact compared to mixes with a lower amount of FA. The results of the LNR and AI modeling showed that LNR performed lower than the AI techniques, with an R2(SSE) of 48.1% (26.5) for Fc and 91.2% (7.9) for P. But ANN, with performance indices of 95.5% (9.4) and 99.1% (2.6) for Fc and P, respectively, outclassed EPR with 90.3% (13.9) and 97.7% (4.2) performance indices for Fc and P, respectively. Taylor’s and variance diagrams were also used to study the behavior of the models for Fc28 and P compared to the measured values. The results show that the ANN and EPR models for Fc28 lie within the RMSE envelop of less than 0.5% and a standard deviation of between 15 MPa and 20 MPa, while the coefficient of determination sector lies between 95% and 99% except for LNR, which lies in the region of less than 80%. In the case of the P models, all the predicted models lie within the RMSE envelop of between 0.5% and 1.0%, a coefficient of determination sector of 95% and above, and a standard deviation between 2.0 and 3.0 points of impact. The variance between measured and modeled values shows that ANN has the best distribution, which agrees with the performance accuracy and fits. Lastly, the ANN learning ability was used to develop a mix design tool used to design sustainable concrete Fc28 based on environmental impact considerations.

 

Doi: 10.28991/CEJ-SP2023-09-03

Full Text: PDF


Keywords


Environmental Impact; Life Cycle Assessment; Green Concrete; Greenhouses Gas Emission; Sustainable Concrete.

References


Amran, M., Fediuk, R., Murali, G., Avudaiappan, S., Ozbakkaloglu, T., Vatin, N., Karelina, M., Klyuev, S., & Gholampour, A. (2021). Fly ash-based eco-efficient concretes: A comprehensive review of the short-term properties. Materials, 14(15), 4264. doi:10.3390/ma14154264.

Lakshmi, R., & Nagan, S. (2011). Utilization of waste e plastic particles in cementitious mixtures. Journal of Structural Engneering (Madras), 38(1), 26–35.

Malhotra, V. High-performance high-volume fly ash concrete. Concrete International, 24(7), 30–34.

Castel, A., & Foster, S. J. (2015). Bond strength between blended slag and Class F fly ash geopolymer concrete with steel reinforcement. Cement and Concrete Research, 72, 48–53. doi:10.1016/j.cemconres.2015.02.016.

Hossain, M. U., Poon, C. S., Dong, Y. H., & Xuan, D. (2018). Evaluation of environmental impact distribution methods for supplementary cementitious materials. Renewable and Sustainable Energy Reviews, 82, 597–608. doi:10.1016/j.rser.2017.09.048.

Li, Y., Liu, Y., Gong, X., Nie, Z., Cui, S., Wang, Z., & Chen, W. (2016). Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production. Journal of Cleaner Production, 120, 221–230. doi:10.1016/j.jclepro.2015.12.071.

Abdalqader, A. F., Jin, F., & Al-Tabbaa, A. (2016). Development of greener alkali-activated cement: Utilisation of sodium carbonate for activating slag and fly ash mixtures. Journal of Cleaner Production, 113, 66–75. doi:10.1016/j.jclepro.2015.12.010.

Krishnan, S., Emmanuel, A.C., Bishnoi, S. (2015). Effective Clinker Replacement Using SCM in Low Clinker Cements. Calcined Clays for Sustainable Concrete. RILEM Bookseries, 10, Springer, Dordrecht, Netherlands. doi:10.1007/978-94-017-9939-3_64.

Guynn, J., & Kline, J. (2015). Maximizing SCM Content of Blended Cements. IEEE Transactions on Industry Applications, 51(6), 4824–4832. doi:10.1109/TIA.2015.2455029.

Flower, D. J. M., & Sanjayan, J. G. (2017). Greenhouse Gas Emissions Due to Concrete Manufacture. Handbook of Low Carbon Concrete, 1–16, Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/b978-0-12-804524-4.00001-4.

Habert, G., D’Espinose De Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. Journal of Cleaner Production, 19(11), 1229–1238. doi:10.1016/j.jclepro.2011.03.012.

De Schepper, M., Van den Heede, P., Van Driessche, I., & De Belie, N. (2014). Life Cycle Assessment of Completely Recyclable Concrete. Materials, 7(8), 6010–6027. doi:10.3390/ma7086010.

González-Fonteboa, B., & Martínez-Abella, F. (2008). Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Building and Environment, 43(4), 429–437. doi:10.1016/j.buildenv.2007.01.008.

Zhang, J., Cheng, J. C. P., & Lo, I. M. C. (2014). Life cycle carbon footprint measurement of Portland cement and ready mix concrete for a city with local scarcity of resources like Hong Kong. International Journal of Life Cycle Assessment, 19(4), 745–757. doi:10.1007/s11367-013-0689-7.

Safiuddin, M., Raman, S. N., & Muhammad, M. F. (2015). Effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Materials, 8(12), 8608–8623. doi:10.3390/ma8125464.

Pacheco Torgal, F., Miraldo, S., Labrincha, J. A., & De Brito, J. (2012). An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC. Construction and Building Materials, 36, 141–150. doi:10.1016/j.conbuildmat.2012.04.066.

Teixeira, E. R., Mateus, R., Camões, A. F., Bragança, L., & Branco, F. G. (2016). Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. Journal of Cleaner Production, 112, 2221–2230. doi:10.1016/j.jclepro.2015.09.124.

Kou, S. C., & Poon, C. S. (2013). A novel polymer concrete made with recycled glass aggregates, fly ash and metakaolin. Construction and Building Materials, 41, 146–151. doi:10.1016/j.conbuildmat.2012.11.083.

Poon, C. S., & Chan, D. (2006). Paving blocks made with recycled concrete aggregate and crushed clay brick. Construction and Building Materials, 20(8), 569–577. doi:10.1016/j.conbuildmat.2005.01.044.

Amran, Y. H. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679. doi:10.1016/j.jclepro.2019.119679.

ASTM C618-22. (2022). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-22.

Liu, J., Fan, X., Li, Z., Zhang, W., Jin, H., Xing, F., & Tang, L. (2022). Novel recycling application of high volume municipal solid waste incineration bottom ash (MSWIBA) into sustainable concrete. Science of the Total Environment, 838, 156124. doi:10.1016/j.scitotenv.2022.156124.

Abdalla, A., & Salih, A. (2022). Microstructure and chemical characterizations with soft computing models to evaluate the influence of calcium oxide and silicon dioxide in the fly ash and cement kiln dust on the compressive strength of cement mortar. Resources, Conservation & Recycling Advances, 15, 200090. doi:10.1016/j.rcradv.2022.200090.

ISO 14040:2006. (2006). Environmental management—life cycle assessment—principles and framework. International Organization for Standards (ISO), Geneva, Switzerland.

Xu, G., & Shi, X. (2018). Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resources, Conservation and Recycling, 136, 95–109. doi:10.1016/j.resconrec.2018.04.010.

Seto, K. E., Churchill, C. J., & Panesar, D. K. (2017). Influence of fly ash allocation approaches on the life cycle assessment of cement-based materials. Journal of Cleaner Production, 157, 65–75. doi:10.1016/j.jclepro.2017.04.093.

Tosun-Felekoğlu, K., Gödek, E., Keskinateş, M., & Felekoğlu, B. (2017). Utilization and selection of proper fly ash in cost effective green HTPP-ECC design. Journal of Cleaner Production, 149, 557–568. doi:10.1016/j.jclepro.2017.02.117.

Balaguera, A., Carvajal, G. I., Albertí, J., & Fullana-i-Palmer, P. (2018). Life cycle assessment of road construction alternative materials: A literature review. Resources, Conservation and Recycling, 132, 37–48. doi:10.1016/j.resconrec.2018.01.003.

Poinot, T., Laracy, M. E., Aponte, C., Jennings, H. M., Ochsendorf, J. A., & Olivetti, E. A. (2018). Beneficial use of boiler ash in alkali-activated bricks. Resources, Conservation and Recycling, 128, 1–10. doi:10.1016/j.resconrec.2017.09.013.

Huang, T. Y., Chiueh, P. T., & Lo, S. L. (2017). Life-cycle environmental and cost impacts of reusing fly ash. Resources, Conservation and Recycling, 123, 255–260. doi:10.1016/j.resconrec.2016.07.001.

Wang, P., Wang, J., Qin, Q., & Wang, H. (2017). Life cycle assessment of magnetized fly-ash compound fertilizer production: A case study in China. Renewable and Sustainable Energy Reviews, 73, 706–713. doi:10.1016/j.rser.2017.02.005.

Ahmaruzzaman, M., & Gupta, V. K. (2012). Application of coal fly ash in air quality management. Industrial and Engineering Chemistry Research, 51(47), 15299–15314. doi:10.1021/ie301336m.

Siddique, R. (2011). Properties of self-compacting concrete containing class F fly ash. Materials and Design, 32(3), 1501–1507. doi:10.1016/j.matdes.2010.08.043.

Jalal, M., Pouladkhan, A., Harandi, O. F., & Jafari, D. (2015). Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self-compacting concrete. Construction and Building Materials, 94, 90–104. doi:10.1016/j.conbuildmat.2015.07.001.

Matos, P. R. de, Foiato, M., & Prudêncio, L. R. (2019). Ecological, fresh state and long-term mechanical properties of high-volume fly ash high-performance self-compacting concrete. Construction and Building Materials, 203, 282–293. doi:10.1016/j.conbuildmat.2019.01.074.

Jong, L. Y., & Teo, D. C. L. (2014). Concrete Containing Palm Oil Fuel Ash (POFA) and Oil Palm Shell (OPS) Subjected to Elevated Temperatures. Journal of Civil Engineering, Science and Technology, 5(3), 13–17. doi:10.33736/jcest.140.2014.

Chernysheva, N., Lesovik, V., Fediuk, R., & Vatin, N. (2020). Improvement of performances of the gypsum-cement fiber reinforced composite (GCFRC). Materials, 13(17), 3847. doi:10.3390/ma13173847.

Pala, M., Özbay, E., Öztaş, A., & Yuce, M. I. (2007). Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Construction and Building Materials, 21(2), 384–394. doi:10.1016/j.conbuildmat.2005.08.009.

Chopra, P., Sharma, R. K., & Kumar, M. (2016). Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming. Advances in Materials Science and Engineering, 2016, 1–10. doi:10.1155/2016/7648467.

Yuan, Z., Wang, L. N., & Ji, X. (2014). Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and ANFIS. Advances in Engineering Software, 67, 156–163. doi:10.1016/j.advengsoft.2013.09.004.

Khursheed, S., Jagan, J., Samui, P., & Kumar, S. (2021). Compressive strength prediction of fly ash concrete by using machine learning techniques. Innovative Infrastructure Solutions, 6(3), 149. doi:10.1007/s41062-021-00506-z.

Hansen, T. C. (1990). Long-term strength of high fly ash concretes. Cement and Concrete Research, 20(2), 193–196. doi:10.1016/0008-8846(90)90071-5.

Mehta, P. K., & Gjørv, O. E. (1982). Properties of Portland cement concrete containing fly ash and condensed silica-fume. Cement and Concrete Research, 12(5), 587–595. doi:10.1016/0008-8846(82)90019-9.

Ravina, D., & Mehta, P. K. (1988). Compressive strength of low cement/high fly ash concrete. Cement and Concrete Research, 18(4), 571–583. doi:10.1016/0008-8846(88)90050-6.

Thomas, M. D. A., & Matthews, J. D. (1992). Carbonation of fly ash concrete. Magazine of Concrete Research, 44(160), 217–228. doi:10.1680/macr.1992.44.160.217.

Lam, L., Wong, Y. L., & Poon, C. S. (1998). Effect of fly ash and silica fume on compressive and fracture behaviors of concrete. Cement and Concrete Research, 28(2), 271–283. doi:10.1016/S0008-8846(97)00269-X.

Atiş, C. D. (2003). High-volume fly ash concrete with high strength and low drying shrinkage. Journal of materials in civil engineering, 15(2), 153-156. doi:10.1061/(asce)0899-1561(2003)15:2(153).

Oner, A., Akyuz, S., & Yildiz, R. (2005). An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cement and Concrete Research, 35(6), 1165–1171. doi:10.1016/j.cemconres.2004.09.031.

Chalee, W., Ausapanit, P., & Jaturapitakkul, C. (2010). Utilization of fly ash concrete in marine environment for long term design life analysis. Materials and Design, 31(3), 1242–1249. doi:10.1016/j.matdes.2009.09.024.

Liu, M., & Wang, Y. (2011). Prediction of the strength development of fly ash concrete. Advanced Materials Research, 150–151, 1026–1033. doi:10.4028/www.scientific.net/AMR.150-151.1026.

Raja, R., Vijayan, P., & Kumar, S. (2022). Durability studies on fly-ash based laterized concrete: A cleaner production perspective to supplement laterite scraps and manufactured sand as fine aggregates. Journal of Cleaner Production, 366, 132908. doi:10.1016/j.jclepro.2022.132908.

Abhilash, P. T., Satyanarayana, P. V. V., & Tharani, K. (2021). Prediction of compressive strength of roller compacted concrete using regression analysis and artificial neural networks. Innovative Infrastructure Solutions, 6, 1-9. doi:10.1007/s41062-021-00590-1.

Pérez-Acebo, H., Montes-Redondo, M., Appelt, A., & Findley, D. J. (2022). A simplified skid resistance predicting model for a freeway network to be used in a pavement management system. International Journal of Pavement Engineering. doi:10.1080/10298436.2021.2020266.

ASTM C39/C39M-14. (2014). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039M-C0039-14..

ASTM C618-19. (2019). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-19.

ISO 14067:2018 (2018). Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification and communication. International Organization for Standards (ISO), Geneva, Switzerland.

Onyelowe, K. C., Ebid, A. M., Riofrio, A., Soleymani, A., Baykara, H., Kontoni, D. P. N., Mahdi, H. A., & Jahangir, H. (2022). Global warming potential-based life cycle assessment and optimization of the compressive strength of fly ash-silica fume concrete; environmental impact consideration. Frontiers in Built Environment, 8, 992552. doi:10.3389/fbuil.2022.992552.

Onyelowe, K. C., Gnananandarao, T., Ebid, A. M., Mahdi, H. A., Razzaghian Ghadikolaee, M., & Al-Ajamee, M. (2022). Evaluating the Compressive Strength of Recycled Aggregate Concrete Using Novel Artificial Neural Network. Civil Engineering Journal (Iran), 8(8), 1679–1693. doi:10.28991/CEJ-2022-08-08-011.

Onyelowe, K. C., Ebid, A. M., Riofrio, A., Baykara, H., Soleymani, A., Mahdi, H. A., Jahangir, H., & Ibe, K. (2022). Multi-Objective Prediction of the Mechanical Properties and Environmental Impact Appraisals of Self-Healing Concrete for Sustainable Structures. Sustainability (Switzerland), 14(15). doi:10.3390/su14159573.

Onyelowe, K. C., Kontoni, D. P. N., Ebid, A. M., Dabbaghi, F., Soleymani, A., Jahangir, H., & Nehdi, M. L. (2022). Multi-Objective Optimization of Sustainable Concrete Containing Fly Ash Based on Environmental and Mechanical Considerations. Buildings, 12(7), 948. doi:10.3390/buildings12070948.

Ebid, A. M. (2020). 35 Years of (AI) in Geotechnical Engineering: State of the Art. Geotechnical and Geological Engineering, 39(2), 637–690. doi:10.1007/s10706-020-01536-7.


Full Text: PDF

DOI: 10.28991/CEJ-SP2023-09-03

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Kennedy C. ONYELOWE, Ahmed M. Ebid, Hisham A. MADHI, Fortune K. C. ONYELOWE, Yazdan SHAFIEYOON, Michael E. ONYIA, Hyginus N. ONAH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message