The Effect of Short-Term Aging on Warm Mix Asphalt Moisture Performance

Zahraa Talib Al-Fayyadh, Hasan Al-Mosawe


Warm Mix Asphalt (WMA) is a good pavement option due to its environmental benefits. Short-term aging is one of the critical factors that the WMA should carefully study. This research aims to study the effect of short-term aging on the warm mix asphalt that has different percentages of rubber. In this study, three percentages of rubber (1, 1.5, and 2%) by weight of aggregate are considered to be added to the WMA. By use of the Indirect Tensile Strength test for HMA, WMA unmodified and modified with CR that is exposed to an aging protocol to assess the sensitivity of asphalt mixture to moisture damage. The results show that HMA is less sensitive to moisture than WMA, and the addition of crumb rubber to WMA generally improves the resistance to moisture compared with WMA with 0% of rubber. However, as the rubber content increases to 2%, the resistance starts to decrease. Finally, SEM images were taken of rubber particles, WMA with and without rubber to investigate the changes occurring to the mixtures.


Doi: 10.28991/CEJ-2022-08-12-09

Full Text: PDF


WMA; Short-Term Aging; Crumb Rubber; Moisture Damage; SEM Images.


Hossain, M., & Muromachi, Y. (2012). A Bayesian network-based framework for real-time crash prediction on the basic freeway segments of urban expressways. Accident Analysis & Prevention, 45, 373-381. doi:10.1016/j.aap.2011.08.004.

Razzaq Alnuami, S. A., & Sarsam, S. I. (2020). Assessing the Influence of Moisture Damage under Repeated Load on Multilayer Interface Bond Strength of Asphalt Concrete. Journal of Engineering, 26(11), 21-42. doi:10.31026/j.eng.2020.11.02.

Nikolaides, A. (2015). Highway engineering: pavements, materials and control of quality. CRC Press, Boca Raton, United States. doi:10.1201/b17690.

Samor, Z. A., & Sarsam, S. I. (2021). Assessing the Moisture and Aging Susceptibility of Cold Mix Asphalt Concrete. Journal of Engineering, 27(2), 59–72. doi:10.31026/j.eng.2021.02.05.

Albayati, A. H., Al-Mosawe, H. M., Allawi, A. A., & Oukaili, N. (2018). Moisture Susceptibility of Sustainable Warm Mix Asphalt. Advances in Civil Engineering, 2018. doi:10.1155/2018/3109435.

Abdullah, M. E., Zamharia, K., Buharia, R., Bakara, S. A., Kamaruddina, N., Nayanb, N., M. Haininc, N. A. H., & S. Hassanc, N. I. M. Y. (2014). Warm Mix Asphalt Technology: A Review. Jurnal Teknologi, 71(3), 39–52.

Bonaquist, R. (2011). Mix Design Practices for Warm-Mix Asphalt. Transportation Research Board, American Association of State Highway and transportation Officials, Washington, United States. doi:10.17226/14488.

Behnood, A. (2020). A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties. Journal of Cleaner Production, 259, 120817. doi:10.1016/j.jclepro.2020.120817.

Sarsam, S. I. (2019). Comparative Assessment of Tensile and Shear Behavior of Cold, Warm and Hot Mix Asphalt Concrete. International Journal of Transportation Engineering and Traffic System, 5(2), 39-47. doi:10.37628/jtets.v5i2.557

Abdul Mahdi, Z. alabidine N., & Sarsam, S. I. (2019). Moisture Damage of Warm Mix Asphalt Concrete. Journal of Engineering, 25(6), 101–116. doi:10.31026/j.eng.2019.06.08.

Zhao, S., Huang, B., Shu, X., & Woods, M. (2013). Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement. Construction and Building Materials, 44, 92–100. doi:10.1016/j.conbuildmat.2013.03.010.

Abed, A., Thom, N., Lo Presti, D., & Airey, G. (2020). Thermo-rheological analysis of WMA-additive modified binders. Materials and Structures/Materiaux et Constructions, 53(3), 1-13. doi:10.1617/s11527-020-01480-1.

Rondón-Quintana, H. A., Fernández-Gómez, W. D., & Carlos Alfonso Zafra-Mejía. (2016). Behavior of a warm mix asphalt using a chemical additive to foam the asphalt binder. Revista Facultad de Ingenieria, 2016(78), 129–138. doi:10.17533/udea.redin.n78a17.

Namaa, M. M., Qasim, Z. I., & AlHelo, K. H. I. (2022). Effect of Styrene Butadiene Styrene on Properties of Open-Graded Asphalt Concrete Mixtures. Al-Nahrain Journal for Engineering Sciences, 25(2), 67–75. doi:10.29194/njes.25020067.

Wang, Z., Dai, Q., Porter, D., & You, Z. (2016). Investigation of microwave healing performance of electrically conductive carbon fiber modified asphalt mixture beams. Construction and Building Materials, 126, 1012-1019. doi:10.1016/j.conbuildmat.2016.09.039.

Ismael, S. A. M., & Ismael, M. Q. (2019). Moisture Susceptibility of Asphalt Concrete Pavement Modified by Nanoclay Additive. Civil Engineering Journal, 5(12), 2535–2553. doi:10.28991/cej-2019-03091431.

Mohammed, S. F., & Ismael, M. Q. (2021). Effect of polypropylene fibers on moisture susceptibility of warm mix asphalt. Civil Engineering Journal (Iran), 7(6), 988–997. doi:10.28991/cej-2021-03091704.

Kanitpong, K., & Bahia, H. U. (2008). Evaluation of HMA moisture damage in Wisconsin as it relates to pavement performance. International Journal of Pavement Engineering, 9(1), 9-17. doi:10.1080/10298430600965122.

Ali, S. H., & Ismael, M. Q. (2021). Improving the Moisture Damage Resistance of HMA by Using Ceramic Fiber and Hydrated Lime. Al-Qadisiyah Journal for Engineering Sciences, 13(4), 274–283. doi:10.30772/qjes.v13i4.681.

Hashimi, S. N., Ahadi, S., Aslan, H., & Kuyumcu, Z. C. (2020). Investigation of the effect of Crumb Rubber Additive on the Fracture of characteristics of asphalt mixtures in control and asphalt rubber mixtures. Academic Perspective Procedia, 3(1), 715–725. doi:10.33793/acperpro.03.01.127.

Aditya Arya, V., & Prakash, S. (2018). Crumb Rubber as Asphalt Modifier. International Journal of Advanced Research, 6(1), 865–868. doi:10.21474/ijar01/6295.

Natalia, C. A., Bressi, S., Thomas, G., & Losa, M. (2018). Effect of crumb rubber in dry process on mix design of asphalt mixtures. 13th Conference of the International Society for Asphalt Pavements (ISAP), 19-21 June, 2018, Fortaleza, Brazil.

Abdul Hassan, N., Airey, G. D., Putra Jaya, R., Mashros, N., & A. Aziz, Md. M. (2014). A Review of Crumb Rubber Modification in Dry Mixed Rubberised Asphalt Mixtures. Jurnal Teknologi, 70(4). doi:10.11113/jt.v70.3501.

Al Qadi, A. N. S., Alhasanat, M. B. A., & Haddad, M. (2016). Effect of crumb rubber as coarse and fine aggregates on the properties of asphalt concrete. American Journal of Engineering and Applied Sciences, 9(3), 558–564. doi:10.3844/ajeassp.2016.558.564.

Neto, S. A. D., Farias, M. M. D., Mello, L. G. R., Pereira, P. A., & Pais, J. C. (2005). The use of crumb rubber in asphalt mixtures using the dry process. 2005 International Symposium on Pavement Recycling, 14-16 March, 2005, São Paulo, Brazil.

Kim, H. H., Lee, M. S., & Lee, S. J. (2016). Identification of the microstructural components of crumb rubber modified asphalt binder (CRMA) and the feasibility of using environmental scanning electron microscopy (ESEM) coupled with energy dispersive X-Ray spectroscopy (EDX). International Journal of Highway Engineering, 18(6), 41–50. doi:10.7855/ijhe.2016.18.6.041.

Baumgardner, G., Hand, A. J., & Aschenbrener, T. B. (2020). Resource responsible use of recycled tire rubber in asphalt pavements. Publication No. FHWA-HIF-20-043, U.S. Department of Transportation, Federal Highway Administration, Washington, United States.

Qadir Ismael, M. (2009). Effect of Reclaimed Scrap Rubber on Some Properties of Asphalt Cement and Asphalt Concrete Mixture. The 6th Engineering Conference, 5-7 April, 2009, College of Engineering, University of Baghdad, Baghdad, Iraq.

Gibreil, H. A. A., & Feng, C. P. (2017). Effects of high-density polyethylene and crumb rubber powder as modifiers on properties of hot mix asphalt. Construction and Building Materials, 142, 101–108. doi:10.1016/j.conbuildmat.2017.03.062.

Abdul Hassan, N., Abdulhussein, A., Zul Hanif Mahmud, M., Asniza M. A., N., Athma Mohd Shukry, N., Mashros, N., Putra Jaya, R., & Md. Yusoff, N. I. (2019). Engineering properties of crumb rubber modified dense-graded asphalt mixtures using dry process. IOP Conference Series: Earth and Environmental Science, 220, 012009. doi:10.1088/1755-1315/220/1/012009.

SCRB-R9 (2003). Standard Specifications for road and Bridges. Section R/9. Hot-Mix Asphaltic Concrete Pavement, Iraqi General Standards, Baghdad, Iraq.

ASTM D5-06 (2017). Standard Test Method for Penetration of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0005-06.

ASTM D113-99 (2010). Standard Test Method for Ductility of bituminous materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0113-99.

ASTM D92-18 (2018). Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International, Pennsylvania, United States. doi:10.1520/D0092-18.

ASTM D 36-06 (2010). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International, Pennsylvania, United States. doi:10.1520/D00360-06.

ASTM D4402-87. (2000). Standard Test Method for Viscosity Determinations of Unfilled Asphalts Using the Brookfield Thermosel Apparatus. STM International, Pennsylvania, United States.

ASTM D 70-18a. (2021). Standard Test Method for Density of Semi-Solid Bituminous Materials Asphalt Binder (Pycnometer Method). ASTM International, Pennsylvania, United States. doi:10.1520/D0070-18A.

ASTM C127-15. (2016). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15.

ASTM C28/C28M-10(2020). (2020). Standard Specification for Gypsum Plasters. ASTM International, Pennsylvania, United States. doi:10.1520/C0028_C0028M-10R20.

ASTM C131/C131M-20. (2020). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi:10.1520/C0131_C0131M-20.

ASTM C88-13. (2018). Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. ASTM International, Pennsylvania, United States. doi:10.1520/C0088-13.

ASTM D6926-20. (2020). Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus. ASTM International, Pennsylvania, United States. doi:10.1520/D6926-20.

ASTM D4867/D4867M-04. (2010). Standard Test Method for effect of moisture on Asphalt Concrete Paving Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D4867_D4867M-04.

ASTM D6931-17. (2017). Standard Test Method for indirect Tensile (IDT) Strength of Asphalt Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D6931-17.

Albayati, A. H., & Abduljabbar, M. H. (2019). The simulation of short-term aging based on the moisture susceptibility of asphalt concrete mixtures. Results in Engineering, 2, 100012. doi:10.1016/j.rineng.2019.100012.

Lolly, R. (2013). Evaluation of short term aging effect of hot mix asphalt due to elevated temperatures and extended aging time. Master Thesis, Arizona State University, Tempe, United States.

Mogawer, W., Austerman, A., & Bahia, H. (2011). Evaluating the effect of warm-mix asphalt technologies on moisture characteristics of asphalt binders and mixtures. Transportation Research Record, 2209, 52–60. doi:10.3141/2209-07.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-12-09


Copyright (c) 2022 Zahraa Talib ALFayyadh, Hasan Al-Mosawe

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.