Connection of a Steel Column Base Plate: Mechanical Behavior and Stiffening Effects

Benyelles Chemseddine Mehdi, Nadir Boumechra, Abdelghani Missoum, Abdelhamid Bouchair

Abstract


This paper investigates the behaviour of a steel column base connection subjected to a bending moment and compressive axial force. The behaviour of this connection is quite complex due to the number of components, such as the base plate, anchor rods, and stiffeners, to be considered in the numerical models. Moreover, a nonlinear three-dimensional finite element model was used to simulate the column base connection. This model can be used to analyze the moment-rotation relationship for the connection through the validation of numerical modeling with those given by the experimental test results and compared with the analytical model based on the components method of Eurocode 3. It was shown that in addition to the stiffness and bending resistance of the column base connection, other mechanical parameters, such as moment-rotation shape, stress distribution, and prying actions, can be significantly influenced by changing the properties of the components. It has been demonstrated that the anchor rod is not only affected by the axial force but also by a local moment that is not taken into consideration by the analytical model of Eurocode3. An extensive parametric study on stiffeners showed very interesting effects obtained by adding the welded stiffeners to the column base connections.

 

Doi: 10.28991/CEJ-2022-08-09-02

Full Text: PDF


Keywords


Column Base; Base Plate; Stiffness; Prying Actions; Anchor Rod; Stiffener, Eurocode 3.

References


Benyelles C.M., Boumechra N., Bouchair A. & Missoum A., (2016). Assembly behavior of a Column Base subjected to a bending moment. Proceedings of International Seminar Innovation and Valorization in Civil Engineering Construction Materials INVACO’2016, 4th edition, Hammamet, Tunisia. (In French).

Cloete, R., & Roth, C. P. (2021). Column base connections under compression and biaxial moments: Experimental and numerical investigations. Journal of Constructional Steel Research, 184. doi:10.1016/j.jcsr.2021.106834.

Asif Bin Kabir, M., Sajid Hasan, A., & Muntasir Billah, A. H. M. (2021). Failure mode identification of column base plate connection using data-driven machine learning techniques. Engineering Structures, 240, 112389. doi:10.1016/j.engstruct.2021.112389.

Hassan, A. S., Torres-Rodas, P., Giulietti, L., & Kanvinde, A. (2021). Strength characterization of exposed column base plates subjected to axial force and biaxial bending. Engineering Structures, 237. doi:10.1016/j.engstruct.2021.112165.

EN 1993-1-8. (2005). Eurocode 3: Design of steel structures-Part 1-8. European Committee for Standardization, Bruxelles, Belgium.

Shi, Y., Shi, G., & Wang, Y. (2007). Experimental and theoretical analysis of the moment-rotation behaviour of stiffened extended end-plate connections. Journal of Constructional Steel Research, 63(9), 1279–1293. doi:10.1016/j.jcsr.2006.11.008.

Merad Boudia, S., Benyelles, C., Boumechra, N., Missoum, A., & Bouchaïr, A. Comportement mécanique d’un tronçon en té d’assemblage boulonné avec et sans précontrainte”. Academic Journal of Civil Engineering, 36(1), 538–541. doi:10.26168/ajce.36.1.114.

Da Silva Seco, L., Couchaux, M., Hjiaj, M., & Neves, L. C. (2021). Column base-plates under biaxial bending moment. Engineering Structures, 231. doi:10.1016/j.engstruct.2020.111386.

Latour, M., Piluso, V., & Rizzano, G. (2014). Rotational behaviour of column base plate connections: Experimental analysis and modelling. Engineering Structures, 68, 14–23. doi:10.1016/j.engstruct.2014.02.037.

Díaz, H., Nuñez, E., & Oyarzo-Vera, C. (2020). Monotonic response of exposed base plates of columns: Numerical study and a new design method. Metals, 10(3), 396. doi:10.3390/met10030396.

DeWolf, J. T., & Sarisley, E. F. (1980). Column Base Plates with Axial Loads and Moments. Journal of the Structural Division, 106(11), 2167–2184. doi:10.1061/jsdeag.0005569.

Thambiratnam, D. P., & Paramasivam, P. (1986). Base Plates Under Axial Loads and Moments. Journal of Structural Engineering, 112(5), 1166–1181. doi:10.1061/(asce)0733-9445(1986)112:5(1166).

Astaneh-Asl, A., & Bergsma, G. (1993). Cyclic behavior and seismic design of steel base plates. Structural Engineering in Natural Hazards Mitigation, 409-414, American Society of Civil Engineering (ASCE), United States.

Burda, J. J. (1999). Studies of seismic behavior of steel base plates. University of Nevada, Reno, United States.

Drake, R. M., & Elkin, S. J. (1999). Beam-column base plate design-LRFD method. Engineering Journal-American Institute of Steel Construction, 36, 29-38.

Gomez, I., Deierlein, G., & Kanvinde, A. (2010). Exposed column base connections subjected to axial compression and flexure. Final Report Presented to the American Institute of Steel Construction, Chicago, United States.

Wald F. (1995). Patky Sloupù, Column Base, CVUT, Praha, ISBN 80-01-01337-5, p. 137.

Wald, F., Sokol, Z., & Steenhuis, M. (1996). Proposal of the stiffness design model of the column bases. Connections in Steel Structures III, 249–258. doi:10.1016/b978-008042821-5/50082-1.

Steenhuis, C. M., Wald, F., Sokol, Z., & Stark, J. W. B. (2008). Concrete in compression and base plate in bending. Heron-English Edition, 53(1/2), 51.

Kanvinde, A. M., Grilli, D. A., & Zareian, F. (2012). Rotational Stiffness of Exposed Column Base Connections: Experiments and Analytical Models. Journal of Structural Engineering, 138(5), 549–560. doi:10.1061/(asce)st.1943-541x.0000495.

Picard, A., & Beaulieu, D. (1985). Behaviour of a Simple Column Base Connection. Canadian Journal of Civil Engineering, 12(1), 126–136. doi:10.1139/l85-013.

Jaspart, J. P., & Vandegans, D. (1998). Application of the component method to column bases. Journal of Constructional Steel Research, 48(2–3), 89–106. doi:10.1016/S0143-974X(98)90196-1.

Hon, K. K., & Melchers, R. E. Experimental behavior of steel column bases”. Journal of Constructional Steel Research, 9, 35–50 10 1016 0143–974 88 90055–7.

Ermopoulos, J. C., & Stamatopoulos, G. N. (1996). Mathematical Modelling of Column Base Plate Connections. Journal of Constructional Steel Research, 36(2), 79–100. doi:10.1016/0143-974X(95)00011-J.

Kovács, N., Calado, L., & Dunai, L. (2004). Behaviour of bolted composite joints: Experimental study. Journal of Constructional Steel Research, 60(3–5), 725–738. doi:10.1016/S0143-974X(03)00139-1.

Torres-Rodas, P., Medalla, M., Zareian, F., & Lopez-Garcia, D. (2022). Cyclic behavior and design methodology of exposed base plates with extended anchor bolts. Engineering Structures, 260, 114235. doi:10.1016/j.engstruct.2022.114235.

Lee, D. Y., Goel, S. C., & Stojadinovic, B. (2008). Exposed column-base plate connections bending about weak axis: I. Numerical parametric study. International Journal of Steel Structures, 8(1), 11-27.

Delhomme, F., Debicki, G., & Chaib, Z. (2010). Experimental behaviour of anchor bolts under pullout and relaxation tests. Construction and Building Materials, 24(3), 266–274. doi:10.1016/j.conbuildmat.2009.08.038.

Zhao, Y., Zhang, H., & Nie, Y. (2019). Study of Shear Capacity of Jointed Rock Mass with Prestressed Anchor Bolt. Advances in Civil Engineering, 2019, 1–10. doi:10.1155/2019/6824543.

Razzaghi, J., & Khoshbakht, A. (2015). Numerical evaluation of column base rigidity. International Journal of Steel Structures, 15(1), 39–49. doi:10.1007/s13296-015-3003-7.

Falborski, T., Hassan, A. S., & Kanvinde, A. M. (2020). Column base fixity in steel moment frames: Observations from instrumented buildings. Journal of Constructional Steel Research, 168. doi:10.1016/j.jcsr.2020.105993.

ANSYS Inc., (2015). ANSYS 15.0 Multiphysics Utility (15th Ed.). San Jose, united States.

Benyelles C.M., Boumechra N., Bouchair A. & Missoum A. (2015). Analysis of the Behavior of the Column Base Assembly Subjected to Axial Compression. 554-562, Proceedings of CICOMM 2015 (1st International Conference on Steel and Composite Construction, 25-26 November, 2015, Tlemcen, Algeria. (In French).

Kumar, G., & Samanta, M. (2020). Experimental evaluation of stress concentration ratio of soft soil reinforced with stone column. Innovative Infrastructure Solutions, 5(1). doi:10.1007/s41062-020-0264-6.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-09-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Benyelles chemseddine Mehdi, Boumechra Nadir, Missoum Abdelghani, Bouchair Abdelhamid

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message