Eco-friendly Super Sulphated Cement Concrete Using Vietnam Phosphogypsum and Sodium Carbonate Na2CO3

Ngoc Lam Nguyen, Phuong Le Vu

Abstract


Sustainable development is one of the critical topics in the construction industry today, especially in reducing CO2 emissions and production energy costs. There have been many studies worldwide on using ground granulated blast furnace slag combined with phosphogypsum (PG) to replace binder (B) in making concrete. However, this topic in Vietnam has not received much attention despite the large backlog of phosphogypsum waste. One of the main disadvantages limiting the feasibility of super-sulphated binders in concrete is the relatively slow hydration and hardening processes, which affect the rate of strength development of mortar and concrete, especially at an early age. In this study, the use of Na2CO3 salt as a quick, solid additive can overcome the disadvantages of this type of binder. Research results show that using 15 to 25% phosphorus gypsum waste (PG) and a combination of 60 to 80% finely granulated blast furnace slag (GGBFS) with a small amount of cement and an activator like Na2CO3can replace cement in making concrete. The concrete mix has good workability, and the maximum compressive strength after 28 days can reach over 50 MPa. Using industrial wastes as the main ingredients to make binders will improve sustainable development, reducing environmental pollution and the cost of mortar and concrete products in construction.

 

Doi: 10.28991/CEJ-2022-08-11-06

Full Text: PDF


Keywords


Concrete; Industrial Waste; Ground Granulated Blast Furnace Slag; Phosphogypsum; Super Sulphated Cement.

References


Wu, Q., Xue, Q., & Yu, Z. (2021). Research status of super sulfate cement. Journal of Cleaner Production, 294, 126228. doi:10.1016/j.jclepro.2021.126228.

Singh, M., & Garg, M. (2002). Production of beneficiated phosphogypsum for cement manufacture. Journal of Scientific and Industrial Research, 61(7), 533–537.

Singh, M. (2003). Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster. Cement and Concrete Research, 33(9), 1363–1369. doi:10.1016/S0008-8846(03)00068-1.

Ghafoori, N., & Chang, W. F. (1991). Roller-compacted concrete slabs using phosphogypsum. Transportation research record, 1301, National Academy of Sciences, Engineering, and Medicine, formerly the National Research Council of the United States.

Lopez, A. M., & Seals, R. K. (1992). The environmental and geotechnical aspects of phosphogypsum utilization and disposal. Mediterranean conference on environmental geotechnology, 437-443, 25-27 May, 1992, Cesme, Turkey.

Garg, M., Singh, M., & Kumar, R. (1996). Some aspects of the durability of a phosphogypsum-lime-fly ash binder. Construction and Building Materials, 10(4), 273–279. doi:10.1016/0950-0618(95)00085-2.

Singh, M., & Garg, M. (1995). Phosphogypsum - Fly ash cementitious binder - Its hydration and strength development. Cement and Concrete Research, 25(4), 752–758. doi:10.1016/0008-8846(95)00065-K.

Singh, M., & Garg, M. (1999). Cementitious binder from fly ash and other industrial wastes. Cement and Concrete Research, 29(3), 309–314. doi:10.1016/S0008-8846(98)00210-5.

Basheer, P. A. M., Gilleece, P. R. V., Long, A. E., & Mc Carter, W. J. (2002). Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration. Cement and Concrete Composites, 24(5), 437–449. doi:10.1016/S0958-9465(01)00075-0.

Gruyaert, E., Van Den Heede, P., Maes, M., & De Belie, N. (2012). Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests. Cement and Concrete Research, 42(1), 173–185. doi:10.1016/j.cemconres.2011.09.009.

Güneyisi, E., & Gesoğlu, M. (2008). A study on durability properties of high-performance concretes incorporating high replacement levels of slag. Materials and Structures/Materiaux et Constructions, 41(3), 479–493. doi:10.1617/s11527-007-9260-y.

Shi, H. sheng, Xu, B. wan, & Zhou, X. chen. (2009). Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Construction and Building Materials, 23(5), 1980–1985. doi:10.1016/j.conbuildmat.2008.08.021.

Song, H. W., & Saraswathy, V. (2006). Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag-An overview. Journal of Hazardous Materials, 138(2), 226–233. doi:10.1016/j.jhazmat.2006.07.022.

Matschei, T., Bellmann, F., & Stark, J. (2005). Hydration behaviour of sulphate-activated slag cements. Advances in Cement Research, 17(4), 167–178. doi:10.1680/adcr.2005.17.4.167.

Masoudi, R., & Hooton, R. D. (2019). Examining the hydration mechanism of super sulfated cements made with high and low-alumina slags. Cement and Concrete Composites, 103, 193–203. doi:10.1016/j.cemconcomp.2019.05.001.

Gruskovnjak, A., Lothenbach, B., Winnefeld, F., Figi, R., Ko, S. C., Adler, M., & Mäder, U. (2008). Hydration mechanisms of super sulphated slag cement. Cement and Concrete Research, 38(7), 983–992. doi:10.1016/j.cemconres.2008.03.004.

Gijbels, K., Pontikes, Y., Samyn, P., Schreurs, S., & Schroeyers, W. (2020). Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Cement and Concrete Research, 132. doi:10.1016/j.cemconres.2020.106054.

Aliabdo, A. A., Abd Elmoaty, A. E. M., & Emam, M. A. (2019). Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Construction and Building Materials, 197, 339–355. doi:10.1016/j.conbuildmat.2018.11.086.

Nguyen, H. A., Chang, T. P., Shih, J. Y., & Chen, C. T. (2019). Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste. Cement and Concrete Composites, 99, 40–48. doi:10.1016/j.cemconcomp.2019.02.019.

Rubert, S., Angulski da Luz, C., F. Varela, M. V., Pereira Filho, J. I., & Hooton, R. D. (2018). Hydration mechanisms of supersulfated cement: The role of alkali activator and calcium sulfate content. Journal of Thermal Analysis and Calorimetry, 134(2), 971–980. doi:10.1007/s10973-018-7243-6.

Ding, S., Shui, Z., Chen, W., Lu, J., & Tian, S. (2014). Properties of supersulphated phosphogypsum slag cement (SSC) concrete. Journal Wuhan University of Technology, Materials Science Edition, 29(1), 109–113. doi:10.1007/s11595-014-0876-9.

Fernández-Jiménez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars: Mechanical strength behaviour. Cement and Concrete Research, 29(8), 1313–1321. doi:10.1016/S0008-8846(99)00154-4.

Tuyan, M., Zhang, L. V., & Nehdi, M. L. (2020). Development of sustainable preplaced aggregate concrete with alkali-activated slag grout. Construction and Building Materials, 263, 120–227. doi:10.1016/j.conbuildmat.2020.120227.

Cercel, J., Adesina, A., & Das, S. (2021). Performance of eco-friendly mortars made with alkali-activated slag and glass powder as a binder. Construction and Building Materials, 270. doi:10.1016/j.conbuildmat.2020.121457.

Wang, J., Lyu, X. J., Wang, L., Cao, X., Liu, Q., & Zang, H. (2018). Influence of the combination of calcium oxide and sodium carbonate on the hydration reactivity of alkali-activated slag binders. Journal of Cleaner Production, 171, 622–629. doi:10.1016/j.jclepro.2017.10.077.

Ellis, K., Silvestrini, R., Varela, B., Alharbi, N., & Hailstone, R. (2016). Modeling setting time and compressive strength in sodium carbonate activated blast furnace slag mortars using statistical mixture design. Cement and Concrete Composites, 74, 1–6. doi:10.1016/j.cemconcomp.2016.08.008.

Bernal, S. A., Provis, J. L., Myers, R. J., San Nicolas, R., & van Deventer, J. S. J. (2014). Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures/Materiaux et Constructions, 48(3), 517–529. doi:10.1617/s11527-014-0412-6.

Abdalqader, A. F., Jin, F., & Al-Tabbaa, A. (2015). Characterisation of reactive magnesia and sodium carbonate-activated fly ash/slag paste blends. Construction and Building Materials, 93, 506–513. doi:10.1016/j.conbuildmat.2015.06.015.

Kim, T., & Jun, Y. (2018). Mechanical Properties of Na2CO3-Activated High-Volume GGBFS Cement Paste. Advances in Civil Engineering, 2018, 1–9. doi:10.1155/2018/8905194.

Sajedi, F., & Razak, H. A. (2010). The effect of chemical activators on early strength of ordinary Portland cement-slag mortars. Construction and Building Materials, 24(10), 1944–1951. doi:10.1016/j.conbuildmat.2010.04.006.

Demirboǧa, R., Türkmen, I., & Karakoç, M. B. (2004). Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cement and Concrete Research, 34(12), 2329–2336. doi:10.1016/j.cemconres.2004.04.017.

Deng, X., Guo, H., Tan, H., Nie, K., He, X., Yang, J., Wang, Y., & Zhang, J. (2022). Effect of organic alkali on hydration of GGBS-FA blended cementitious material activated by sodium carbonate. Ceramics International, 48(2), 1611–1621. doi:10.1016/j.ceramint.2021.09.240.

Lam, N.N. (2020). A study on improvement of early - age strength of super sulfated cement using phosphogypsum. CIGOS 2019, Innovation for Sustainable Infrastructure. Lecture Notes in Civil Engineering, 54, Springer, Singapore. doi:10.1007/978-981-15-0802-8_84.

Stark, J., Frohburg, U., & Mielke, I. (2001). Supersulfated cement with and without cement clinker. Proceedings of the International Symposium on Non-Traditional Cement and Concrete, Brno, Czech Republic.

Ngoc Lam, N. (2020). Eco - Concrete made with phosphogypsum-based super sulfated cement. IOP Conference Series: Materials Science and Engineering, 869, 032031. doi:10.1088/1757-899X/869/3/032031.

Lam, N. N. (2018). A study on super-sulfated cement using Dinh Vu phosphogypsum. IOP Conference Series: Earth and Environmental Science, 143(1). doi:10.1088/1755-1315/143/1/012016.

Maldonado Bandala, E. E., Cabrera Luna, K., Escalante García, J. I., & Nieves Mendoza, D. (2018). Resistance to compression and microstructure of concrete manufactured with supersulfated cements-based materials of volcanic origin exposed to a sulphate environment. Revista ALCONPAT, 9(1), 106–116. doi:10.21041/ra.v9i1.374.

Nguyen, H.-A., Chang, T.-P., Chen, C.-T., & Huang, T.-Y. (2022). Engineering and creep performances of green super-sulfated cement concretes using circulating fluidized bed combustion fly ash. Construction and Building Materials, 346, 128274. doi:10.1016/j.conbuildmat.2022.128274.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-11-06

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Ngoc Lam Nguyen, Phuong Le Vu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message